diameter variation
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 27)

H-INDEX

18
(FIVE YEARS 1)

2022 ◽  
Vol 85 (1) ◽  
Author(s):  
Caroline Schiave Germano ◽  
Renato Antunes Schiave Germano ◽  
Felipe Biscegli Cid ◽  
Flavio Augusto Schiave Germano ◽  
Pedro Carlos Carricondo ◽  
...  

Evergreen ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 879-884
Author(s):  
Sulthan Rafii Ardiansyah ◽  
Nasruddin ◽  
Wellyzar Sjamsuridzal ◽  
Wisnu Wardhana ◽  
Nining Betawati Prihantini

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Dongfeng Li ◽  
Fu Yu ◽  
Heng Fan ◽  
Rui Wang ◽  
Shangyu Yang ◽  
...  

Multistage fracturing is the main means of shale gas development, and casing deformation frequently occurs during fracturing of shale gas horizontal wells. Fracturing fluid entering the formation will change in situ stress nearby the wellbore. The changes of in situ stress are mainly reflected in the following two aspects: one is the increase of in situ stress and the other is the nonuniformity of in situ stress along the wellbore. And it is for this reason that the production casing is more likely to collapse under the nonuniform in situ stress load. According to the service conditions of production casing in shale gas reservoir, this paper studied the casing deformation and the collapsing strength subjected to the nonuniform loading by the experimental and numerical simulation method. The results show that under the condition of nonuniform loading, (1) the diameter variation rate of the casing reduces with the increase in the ratio of sample to tooling length. When the ratio is less than 3, the casing collapse strength will be significantly reduced. And when the ratio is greater than 6, the impact of sample length on casing collapse strength can be ignored. (2) The increase in the applied loading angle will decrease the diameter variation rate. When the loading angle increases from 0° to 90°, the critical load value increases from 1600 kN to 4000 kN. (3) The increase in load unevenness coefficient will rapidly decrease the casing collapse strength. When the load unevenness coefficient n is 0.8, the casing collapse strength reduces to 60%, and when the load unevenness coefficient n is 0, the casing collapse strength reduces to 28%. The findings of this study can help for better understanding of casing damage mechanism in volume fracturing of shale gas horizontal well and guide the selection of multistage fracturing casing type and fracturing interval design.


2021 ◽  
Vol 841 (1) ◽  
pp. 012030
Author(s):  
A M Syamsuri ◽  
D Suriamihardja ◽  
M A Thaha ◽  
T Rachman

2021 ◽  
Author(s):  
Mahdi Mohseni ◽  
Amir Nourani ◽  
Hossein Korani ◽  
Hadi Moeinnia ◽  
Amirhossein Borjali ◽  
...  

Background: Bone and site hold tendon inside (BASHTI) is an implant-less technique that can solve some of the problems associated with other anterior cruciate ligament (ACL) reconstructive methods. This study aims to investigate the effect of core bone diameter variation on the biomechanical properties of a reconstructed ACL using BASHTI technique. Methods: A number of 15 laboratory samples of reconstructed ACL were built using bovine digital tendons and Sawbones blocks. Samples were divided into three groups with different core bone diameters of 8 mm, 8.5 mm, and 9 mm. The double-stranded tendon size and bone tunnel diameter were 8 mm and 10 mm, respectively. A loading scenario consisting of two cyclic loadings followed by a single cycle pull-out loading was applied to the samples simulating the after-surgery loading conditions to observe the fixation strength. Results: Results showed that the core bone diameter had a significant effect on the failure mode of the samples (P = 0.006) and their fixation strength (P < 0.001). Also, it was observed that the engaging length and the average cyclic stiffness (ACS) of them were influenced by the core bone diameter significantly (engaging length: P = 0.001, ACS: P = 0.007), but its effect on the average pull-out stiffness was not significant (P = 0.053). Conclusions: It was concluded that core bone diameter variation has a significant impact on the mechanical properties of ACL reconstruction when BASHTI technique is used, and it should be noted for surgeons who use BASHTI technique.


2021 ◽  
Author(s):  
Nada Sabourdin ◽  
Loïc Del Bove ◽  
Nicolas Louvet ◽  
Sarah Luzon‐Chetrit ◽  
Benoît Tavernier ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 154
Author(s):  
Chen Ru ◽  
Xiaotao Hu ◽  
Wene Wang ◽  
Hui Ran ◽  
Tianyuan Song ◽  
...  

Precise irrigation management of grapevines in greenhouses requires a reliable method to easily quantify and monitor the grapevine water status to enable effective manipulation of the water stress of the plants. This study describes a study on stem diameter variations of grapevine planted in a greenhouse in the semi-arid area of Northwest China. In order to determine the applicability of signal intensity of stem diameter variation to evaluate the water status of grapevine and soil. The results showed that the relative variation curve of the grapevine stem diameter from the vegetative stage to the fruit expansion stage showed an overall increasing trend. The correlations of MDS (maximum daily shrinkage) and DI (daily increase) with meteorological factors were significant (p < 0.05), and the correlations with SWP, RWC and soil moisture were weak. Although MDS and DI can diagnose grapevine water status in time, SIMDS and SIDI have the advantages of sensitivity and signal intensity compared with other indicators. Compared with MDS and DI, the R2 values of the regression equations of SIMDS and SIDI with SWP and RWC were high, and the correlation reached a very significant level (p < 0.01). Thus, SIMDS and SIDI are more suitable for the diagnosis of grapevine water status. The SIMDS peaked at the fruit expansion stage, reaching 0.957–1.384. The signal-to-noise ratio of SIDI was higher than that of MDS across the three treatments at the vegetative stage. The value and signal-to-noise ratio of SIDI at the flowering stage were similar to those of SIMDS, while the correlation between SIDI and the soil moisture content was higher than that of SIMDS. It can be concluded that that SIDI is suitable as an indicator of water status of grapevine and soil during the vegetative and flowering stages. In addition, the signal-to-noise ratio of SIMDS during the fruit expansion and mature stages was significantly higher than that of SIDI. Therefore, SIMDS is suitable as an indicator of the moisture status of grapevine and soil during the fruit expansion and mature stages. In general, SIMDS and SIDI were very good predictors of the plant water status during the growth stage and their continuous recording offers the promising possibility of their use in automatic irrigation scheduling in grapevine.


2021 ◽  
Author(s):  
Samuli Junttila ◽  
Teemu Hölttä ◽  
Ninni Saarinen ◽  
Mikko Vastaranta

&lt;p&gt;The climate change has brought better environmental conditions for numerous bark beetles to reproduce in unmet amounts. Large-scale tree mortality events have been witnessed globally due to mass outbreaks of phloem feeding pest insects, such as &lt;em&gt;Ips typographus&lt;/em&gt; (L.), that are jeopardizing numerous ecosystem services forests provide. To be able to assess the current and future bark beetle-induced tree mortality, we need more profound understanding of the processes that occur after the infestation of a tree, eventually leading to tree mortality. We measured the diurnal variation in tree stem diameter from four healthy and four infested trees trees during an &lt;em&gt;I. typographus&lt;/em&gt; infestation in Helsinki, Finland, of which the four infested trees died during the investigation period between June and September in 2020. The condition of the tree crowns was also visually assessed in the beginning and the end of the study period.&lt;/p&gt;&lt;p&gt;We found that the amplitude of diurnal diameter variation was considerably smaller in the infested trees compared to healthy trees indicating smaller diurnal variation in the water content of the stem. The decrease in diurnal diameter variation was followed by abrupt and irreversible declines in tree diameter likely indicating tissue damage due to hydraulic failure. The declines were triggered largely by increased atmospheric water demand during the hottest days of the investigation period. The condition of the tree crown in the beginning of the study did not reflect the timing of the decline in tree diameter, but one of the most visually vital trees declined first.&lt;/p&gt;&lt;p&gt;The results indicate that hotter summer temperatures will increase and hasten bark beetle-induced tree mortality. This happens because irreversible hydraulic failure seems to occur in a cross pressure of bark beetle-induced stress and increased atmospheric water demand. Trees are likely more vulnerable to bark beetle-related hydraulic failure in the future because of increasing atmospheric water demand and more intense droughts. The triggers and processes that cause bark beetle-related tree mortality need more careful investigation to incorporate them into models that forecast tree mortality.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document