Evaluation of glycemic abnormalities in patients with Beta Thalassemia major using continous glucose monitoring system (CGMS) and oral glucose tolerance test (OGTT): A pilot study

Author(s):  
Mohamed Abdeldaem Yassin ◽  
Ashraf Tawfiq Soliman ◽  
Ahmed Said Alawwa
2019 ◽  
Vol 8 (2) ◽  
pp. 260 ◽  
Author(s):  
Bushra Jalil ◽  
Valentina Hartwig ◽  
Davide Moroni ◽  
Ovidio Salvetti ◽  
Antonio Benassi ◽  
...  

Obesity is recognized as a major public health issue, as it is linked to the increased risk of severe pathological conditions. The aim of this pilot study is to evaluate the relations between adiposity (and biophysical characteristics) and temperature profiles under thermoneutral conditions in normal and overweight females, investigating the potential role of heat production/dissipation alteration in obesity. We used Infrared Thermography (IRT) to evaluate the thermogenic response to a metabolic stimulus performed with an oral glucose tolerance test (OGTT). Thermographic images of the right hand and of the central abdomen (regions of interests) were obtained basally and during the oral glucose tolerance test (3 h OGTT with the ingestion of 75 g of oral glucose) in normal and overweight females. Regional temperature vs BMI, % of body fat and abdominal skinfold were statistically compared between two groups. The study showed that mean abdominal temperature was significantly greater in lean than overweight participants (34.11 ± 0.70 °C compared with 32.92 ± 1.24 °C, p < 0.05). Mean hand temperature was significantly greater in overweight than lean subjects (31.87 ± 3.06 °C compared with 28.22 ± 3.11 °C, p < 0.05). We observed differences in temperature profiles during OGTT between lean and overweight subjects: The overweight individuals depict a flat response as compared to the physiological rise observed in lean individuals. This observed difference in thermal pattern suggests an energy rate imbalance towards nutrients storage of the overweight subjects.


Author(s):  
Thomas G. Kontou ◽  
Charli Sargent ◽  
Gregory D. Roach

Continuous glucose monitoring devices measure glucose in interstitial fluid. The devices are effective when used by patients with type 1 and 2 diabetes but are increasingly being used by researchers who are interested in the effects of various behaviours of glucose concentrations in healthy participants. Despite their more frequent application in this setting, the devices have not yet been validated for use under such conditions. A total of 124 healthy participants were recruited to a ten-day laboratory study. Each participant underwent four oral glucose tolerance tests, and a total of 3315 out of a possible 4960 paired samples were included in the final analysis. Bland–Altman plots and mean absolute relative differences were used to determine the agreement between the two methods. Bland–Altman analyses revealed that the continuous glucose monitoring devices had proportional bias (R = 0.028, p < 0.001) and a mean bias of −0.048 mmol/L, and device measurements were more variable as glucose concentrations increased. Ninety-nine per cent of paired values were in Zones A and B of the Parkes Error Grid plot, and there was an overall mean absolute relative difference of 16.2% (±15.8%). There was variability in the continuous glucose monitoring devices, and this variability was higher when glucose concentrations were higher. If researchers were to use continuous glucose monitoring devices to measure glucose concentrations during an oral glucose tolerance test in healthy participants, this variability would need to be considered.


Sign in / Sign up

Export Citation Format

Share Document