Assessing shallow marine biodiversity patterns and climate change using micropaleontological records

Author(s):  
Wing-tung Chiu
2016 ◽  
Author(s):  
Wing Tung Ruby Chiu ◽  
◽  
Moriaki Yasuhara ◽  
Thomas M. Cronin ◽  
Gene Hunt ◽  
...  

Diversity ◽  
2012 ◽  
Vol 4 (2) ◽  
pp. 224-238 ◽  
Author(s):  
Robin Kundis Craig

2015 ◽  
Author(s):  
Tim Deprez ◽  
Magda Vincx ◽  
Adelino V.M. Canario ◽  
Karim Erzini ◽  
Katherine Brownlie

The first Mares Conference on Marine Ecosystems Health and Conservation was a successful event organized by the MARES doctoral programme bringing together over 150 researchers in Olhão, Portugal from November 17th to 21st 2014. The conference was opened by Prof. Dr. Hans-Otto Pörtner, whose keynote address focused on a sectoral analysis by the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) on the impacts of climate change on the world’s oceans. The first session on “Future oceans” was opened with a talk by Dr. Frank Melzner highlighting the problems calcifying invertebrates face in the warmer, more acidic and hypoxic waters. Other presenters dealt with changing global diversity patterns, ocean acidification, and the loss the genetic diversity. The second session on “Natural resources” was opened by Dr. Rainer Froese, who focused on whether or not the oceans can feed humanity. This talk introduced other contributions in the session, dealing with fisheries issues and Marine Protected Areas, as well as problems with proper identifications of species used for economic purposes. “Biodiversity effects” was the scope of the third session opened by a talk on oxygenation and marine biodiversity challenges in the 21st Century by Prof. Lisa Levin. Rapid ocean deoxygenation is a process which is currently less investigated but which has considerable effects on body size, taxonomic composition, habitat heterogeneity, and nutrient cycling. The following presentations focused on other factors having a strong effect on marine biodiversity, ranging from the harvesting of algae to the fragmentation of ecosystems. The fourth session addressed “Biological invasions”. Dr. Gregory Ruiz discussed biological invasions in North American marine ecosystems and the need for constant monitoring, and the use of a dynamic and multi-vector approach. Problems with invasive species in European waters were addressed with examples from the Baltic Sea, the North Sea, and the Mediterranean Sea. The fifth session on “Ocean Noise” was opened by Prof. Peter Tyack with a talk on the effects of anthropogenic sound on marine mammals. Although ocean noise issues are often linked to marine mammals, the effects of sound related to marine constructions on fish behaviour, nicely illustrated that ocean noise is a factor with a much broader impact than expected. The last session of the first Mares Conference dealt with “Habitat loss”. Dr. Michael Beck focused on this topic with his talk on ‘Building Coastal Resilience for Climate Adaptation and Risk Reduction’. Talks in the session ranged from the use of telemetry as a tool to monitor species in changed habitats, to cases dealing with sea level rise related problems in for example salt-marshes. The first Mares Conference offered a broad range of oral and poster presentations, as well as digital presentations. The poster and digital object presentations included over 100 contributions.


Author(s):  
Helmut Hillebrand ◽  
Thomas Brey ◽  
Julian Gutt ◽  
Wilhelm Hagen ◽  
Katja Metfies ◽  
...  

2017 ◽  
Vol 54 (5) ◽  
pp. 550-585 ◽  
Author(s):  
David G. Lowe ◽  
R.W.C. Arnott ◽  
Godfrey S. Nowlan ◽  
A.D. McCracken

The Potsdam Group is a Cambrian to Lower Ordovician siliciclastic unit that crops out along the southeastern margins of the Ottawa graben. From its base upward, the Potsdam consists of the Ausable, Hannawa Falls, and Keeseville formations. In addition, the Potsdam is subdivided into three allounits: allounit 1 comprises the Ausable and Hannawa Falls, and allounits 2 and 3, respectively, the lower and upper parts of the Keeseville. Allounit 1 records Early to Middle Cambrian syn-rift arkosic fluvial sedimentation (Ausable Formation) with interfingering mudstone, arkose, and dolostone of the marine Altona Member recording transgression of the easternmost part of the Ottawa graben. Rift sedimentation was followed by a Middle Cambrian climate change resulting in local quartzose aeolian sedimentation (Hannawa Falls Formation). Allounit 1 sedimentation termination coincided with latest(?) Middle Cambrian tectonic reactivation of parts of the Ottawa graben. Allounit 2 (lower Keeseville) records mainly Upper Cambrian quartzose fluvial sedimentation, with transgression of the northern Ottawa graben resulting in deposition of mixed carbonate–siliciclastic strata of the marine Rivière Aux Outardes Member. Sedimentation was then terminated by an earliest Ordovician regression and unconformity development. Allounit 3 (upper Keeseville) records diachronous transgression across the Ottawa graben that by the Arenigian culminated in mixed carbonate–siliciclastic, shallow marine sedimentation (Theresa Formation). The contact separating the Potsdam Group and Theresa Formation is conformable, except locally in parts of the northern Ottawa graben where the presence of localized islands and (or) coastal salients resulted in subaerial exposure and erosion of the uppermost Potsdam strata, and accordingly unconformity development.


2019 ◽  
Vol 374 (1778) ◽  
pp. 20190032 ◽  
Author(s):  
John I. Spicer ◽  
Simon A. Morley ◽  
Francisco Bozinovic

Documenting and explaining global patterns of biodiversity in time and space have fascinated and occupied biologists for centuries. Investigation of the importance of these patterns, and their underpinning mechanisms, has gained renewed vigour and importance, perhaps becoming pre-eminent, as we attempt to predict the biological impacts of global climate change. Understanding the physiological features that determine, or constrain, a species' geographical range and how they respond to a rapidly changing environment is critical. While the ecological patterns are crystallizing, explaining the role of physiology has just begun. The papers in this volume are the primary output from a Satellite Meeting of the Society of Experimental Biology Annual Meeting, held in Florence in July 2018. The involvement of two key environmental factors, temperature and oxygen, was explored through the testing of key hypotheses. The aim of the meeting was to improve our knowledge of large-scale geographical differences in physiology, e.g. metabolism, growth, size and subsequently our understanding of the role and vulnerability of those physiologies to global climate warming. While such an aim is of heuristic interest, in the midst of our current biodiversity crisis, it has an urgency that is difficult to overstate. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.


2014 ◽  
pp. 181-187 ◽  
Author(s):  
Thomas Wernberg ◽  
Bayden D. Russell ◽  
Mads S. Thomsen ◽  
Sean D. Connell

Sign in / Sign up

Export Citation Format

Share Document