scholarly journals Climate Change: Warming Impacts on Marine Biodiversity

Author(s):  
Helmut Hillebrand ◽  
Thomas Brey ◽  
Julian Gutt ◽  
Wilhelm Hagen ◽  
Katja Metfies ◽  
...  
Diversity ◽  
2012 ◽  
Vol 4 (2) ◽  
pp. 224-238 ◽  
Author(s):  
Robin Kundis Craig

2015 ◽  
Author(s):  
Tim Deprez ◽  
Magda Vincx ◽  
Adelino V.M. Canario ◽  
Karim Erzini ◽  
Katherine Brownlie

The first Mares Conference on Marine Ecosystems Health and Conservation was a successful event organized by the MARES doctoral programme bringing together over 150 researchers in Olhão, Portugal from November 17th to 21st 2014. The conference was opened by Prof. Dr. Hans-Otto Pörtner, whose keynote address focused on a sectoral analysis by the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) on the impacts of climate change on the world’s oceans. The first session on “Future oceans” was opened with a talk by Dr. Frank Melzner highlighting the problems calcifying invertebrates face in the warmer, more acidic and hypoxic waters. Other presenters dealt with changing global diversity patterns, ocean acidification, and the loss the genetic diversity. The second session on “Natural resources” was opened by Dr. Rainer Froese, who focused on whether or not the oceans can feed humanity. This talk introduced other contributions in the session, dealing with fisheries issues and Marine Protected Areas, as well as problems with proper identifications of species used for economic purposes. “Biodiversity effects” was the scope of the third session opened by a talk on oxygenation and marine biodiversity challenges in the 21st Century by Prof. Lisa Levin. Rapid ocean deoxygenation is a process which is currently less investigated but which has considerable effects on body size, taxonomic composition, habitat heterogeneity, and nutrient cycling. The following presentations focused on other factors having a strong effect on marine biodiversity, ranging from the harvesting of algae to the fragmentation of ecosystems. The fourth session addressed “Biological invasions”. Dr. Gregory Ruiz discussed biological invasions in North American marine ecosystems and the need for constant monitoring, and the use of a dynamic and multi-vector approach. Problems with invasive species in European waters were addressed with examples from the Baltic Sea, the North Sea, and the Mediterranean Sea. The fifth session on “Ocean Noise” was opened by Prof. Peter Tyack with a talk on the effects of anthropogenic sound on marine mammals. Although ocean noise issues are often linked to marine mammals, the effects of sound related to marine constructions on fish behaviour, nicely illustrated that ocean noise is a factor with a much broader impact than expected. The last session of the first Mares Conference dealt with “Habitat loss”. Dr. Michael Beck focused on this topic with his talk on ‘Building Coastal Resilience for Climate Adaptation and Risk Reduction’. Talks in the session ranged from the use of telemetry as a tool to monitor species in changed habitats, to cases dealing with sea level rise related problems in for example salt-marshes. The first Mares Conference offered a broad range of oral and poster presentations, as well as digital presentations. The poster and digital object presentations included over 100 contributions.


2014 ◽  
pp. 181-187 ◽  
Author(s):  
Thomas Wernberg ◽  
Bayden D. Russell ◽  
Mads S. Thomsen ◽  
Sean D. Connell

Marine Policy ◽  
2013 ◽  
Vol 38 ◽  
pp. 438-446 ◽  
Author(s):  
Marcus Haward ◽  
Julie Davidson ◽  
Michael Lockwood ◽  
Marc Hockings ◽  
Lorne Kriwoken ◽  
...  

2014 ◽  
Vol 72 (3) ◽  
pp. 741-752 ◽  
Author(s):  
Miranda C. Jones ◽  
William W. L. Cheung

Abstract Species distribution models (SDMs) are important tools to explore the effects of future global changes in biodiversity. Previous studies show that variability is introduced into projected distributions through alternative datasets and modelling procedures. However, a multi-model approach to assess biogeographic shifts at the global scale is still rarely applied, particularly in the marine environment. Here, we apply three commonly used SDMs (AquaMaps, Maxent, and the Dynamic Bioclimate Envelope Model) to assess the global patterns of change in species richness, invasion, and extinction intensity in the world oceans. We make species-specific projections of distribution shift using each SDM, subsequently aggregating them to calculate indices of change across a set of 802 species of exploited marine fish and invertebrates. Results indicate an average poleward latitudinal shift across species and SDMs at a rate of 15.5 and 25.6 km decade−1 for a low and high emissions climate change scenario, respectively. Predicted distribution shifts resulted in hotspots of local invasion intensity in high latitude regions, while local extinctions were concentrated near the equator. Specifically, between 10°N and 10°S, we predicted that, on average, 6.5 species would become locally extinct per 0.5° latitude under the climate change emissions scenario Representative Concentration Pathway 8.5. Average invasions were predicted to be 2.0 species per 0.5° latitude in the Arctic Ocean and 1.5 species per 0.5° latitude in the Southern Ocean. These averaged global hotspots of invasion and local extinction intensity are robust to the different SDM used and coincide with high levels of agreement.


2015 ◽  
Vol 95 (1) ◽  
pp. 7-27 ◽  
Author(s):  
Michael Elliott ◽  
Ángel Borja ◽  
Abigail McQuatters-Gollop ◽  
Krysia Mazik ◽  
Silvana Birchenough ◽  
...  

2010 ◽  
Vol 365 (1549) ◽  
pp. 2107-2116 ◽  
Author(s):  
Mark T. Bulling ◽  
Natalie Hicks ◽  
Leigh Murray ◽  
David M. Paterson ◽  
Dave Raffaelli ◽  
...  

Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH 4 -N into the water column, but no effect of species richness on the release of PO 4 -P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.


Sign in / Sign up

Export Citation Format

Share Document