Counterion Binding in Adsorbed Surfactant Films Studied by Surface Tensiometry and Total Reflection XAFS Spectroscopy

MEMBRANE ◽  
2021 ◽  
Vol 46 (5) ◽  
pp. 254-260
Author(s):  
Yosuke Imai
2020 ◽  
Vol 27 (6) ◽  
pp. 1618-1625
Author(s):  
Yuki Wakisaka ◽  
Bing Hu ◽  
Daiki Kido ◽  
Md. Harun Al Rashid ◽  
Wenhan Chen ◽  
...  

A bent crystal Laue analyser (BCLA) is an X-ray energy analyser used for fluorescence X-ray absorption fine-structure (XAFS) spectroscopy to separate the fluorescence X-ray emission line of a target atom from the elastic scattering X-rays and other fluorescence emission lines. Here, the feasibility of the BCLA for total reflection fluorescence XAFS (TRF-XAFS), which has a long X-ray footprint on the substrate surface owing to grazing incidence, was tested. The focal line of the BCLA was adjusted on the X-ray footprint and the XAFS signal for one monolayer of Pt deposited on a 60 nm Au film with high sensitivity was obtained. Although range-extended XAFS was expected by the rejection of Au fluorescence arising from the Au substrate, a small glitch was found in the Au L 3 edge because of the sudden change of the complex refraction index of the Au substrate at the Au edge. This abnormal spectrum feature can be removed by reflectivity correction using Au foil absorption data. BCLA combined with TRF-XAFS spectroscopy (BCLA + TRF-XAFS) is a new technique for the in situ surface analysis of highly dispersed systems even in the presence of a liquid overlayer.


Author(s):  
Werner P. Rehbach ◽  
Peter Karduck

In the EPMA of soft x rays anomalies in the background are found for several elements. In the literature extremely high backgrounds in the region of the OKα line are reported for C, Al, Si, Mo, and Zr. We found the same effect also for Boron (Fig. 1). For small glancing angles θ, the background measured using a LdSte crystal is significantly higher for B compared with BN and C, although the latter are of higher atomic number. It would be expected, that , characteristic radiation missing, the background IB (bremsstrahlung) is proportional Zn by variation of the atomic number of the target material. According to Kramers n has the value of unity, whereas Rao-Sahib and Wittry proposed values between 1.12 and 1.38 , depending on Z, E and Eo. In all cases IB should increase with increasing atomic number Z. The measured values are in discrepancy with the expected ones.


2003 ◽  
Vol 107 ◽  
pp. 203-206 ◽  
Author(s):  
M. Bounakhla ◽  
A. Doukkali ◽  
K. Lalaoui ◽  
H. Aguenaou ◽  
N. Mokhtar ◽  
...  
Keyword(s):  

1973 ◽  
Vol 34 (5-6) ◽  
pp. 335-340 ◽  
Author(s):  
B. Julia ◽  
A. Neveu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document