wave excitation
Recently Published Documents


TOTAL DOCUMENTS

1183
(FIVE YEARS 168)

H-INDEX

54
(FIVE YEARS 4)

Author(s):  
Jingdong Chen ◽  
Xuan Li ◽  
Jinliang Zheng ◽  
Xingmei Ye ◽  
Huichuan Lin

Abstract Gallium (Ga) nanospheres (NSs) with diameters ranging from 50 to 300 nm are fabricated by using femtosecond laser ablation. The forward scattering of large Ga nanospheres measured using dark-field microscopy is determined by the coherent interaction between dipole and quadrupole resonances while it becomes governed by the dipole resonance when evanescent wave excitation is employed. We demonstrate that the scattering spectrum and pattern of quadrupole of large Ga NS can be resolved by using a cross-polarized analyzer in the collection channel. The experimental observations agree well with the numerical simulation based on the complex refractive index of liquid Ga.


2021 ◽  
Vol 130 (22) ◽  
pp. 223901
Author(s):  
Xingtai Chen ◽  
Thomas J. Hayward ◽  
Wenqing Liu ◽  
Matthew T. Bryan

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongpyo Seo ◽  
S. Hwang ◽  
Byungro Kim ◽  
Yeonhee Yang ◽  
Seungha Yoon ◽  
...  

AbstractAsymmetric spin wave excitation and propagation are key properties to develop spin-based electronics, such as magnetic memory, spin information and logic devices. To date, such nonreciprocal effects cannot be manipulated in a system because of the geometrical magnetic configuration, while large values of asymmetry ratio are achieved. In this study, we suggest a new magnetic system with two blocks, in which the asymmetric intensity ratio can be changed between 0.276 and 1.43 by adjusting the excitation frequency between 7.8 GHz and 9.4 GHz. Because the two blocks have different widths, they have their own spin wave excitation frequency ranges. Indeed, the spin wave intensities in the two blocks, detected by the Brillouin light scattering spectrum, were observed to be frequency-dependent, yielding tuneable asymmetry ratio. Thus, this study provides a new path to enhance the application of spin waves in spin-based electronics.


2021 ◽  
Vol 923 (2) ◽  
pp. 185
Author(s):  
Anastasia V. Marchuk ◽  
Charles W. Smith ◽  
Abigale S. Watson ◽  
Matthew R. Argall ◽  
Colin J. Joyce ◽  
...  

Abstract We have surveyed magnetic field data from the Ulysses spacecraft and found examples of magnetic waves with the expected characteristics that point to excitation by newborn pickup He+. With interstellar neutrals as the likely source for the pickup ions, we have modeled the ion production rates and used them to produce wave excitation rates that we compare to the background turbulence rates. The source ions are thought to be always present, but the waves are seen when growth rates are comparable to or exceed the turbulence rates. With the exception of the fast latitude scans, and unlike the waves excited by newborn interstellar pickup H+, the waves are seen throughout the Ulysses orbit.


Author(s):  
Fang-Jie Zhou ◽  
Kai Zhao ◽  
De-Qi Wen ◽  
Jian-Kai Liu ◽  
Yong-Xin Liu ◽  
...  

Abstract It is recognized that in large-area, very-high-frequency capacitively coupled plasma (VHF CCP) reactors, the higher harmonics generated by nonlinear sheath motion can lead to enhanced standing wave excitation. In this work, a self-consistent electromagnetic model, which couples a one-dimensional, radial nonlinear transmission line model with a bulk plasma fluid model, is employed to investigate the nonlinear standing wave excitation in a VHF driven, geometrically asymmetric capacitive argon discharge operated at low pressure. By considering a radially nonuniform plasma density profile (case I ) calculated self-consistently by the nonlinear electromagnetic model and the corresponding radially-averaged, uniform plasma density profile (case II ), we first examine the effect of the plasma density nonuniformity on the propagation of electromagnetic surface waves in a 3 Pa argon discharge driven at 100MHz and 90W. Compared to case II, the higher plasma density at the radial center in case I determines a higher plasma series resonance frequency, yielding stronger high-order harmonic excitations and more significant central peak in the harmonic current density Jz,n and the harmonic electron power absorption pn profiles. Therefore, under the assumption of the radially uniform plasma density in a CCP discharge, the self-excitation of higher harmonics at the radial center should be underestimated. Second, using the self-consistent electromagnetic model, the effect of the rf power on the excitation of nonlinear standing waves is investigated in a 3 Pa argon discharge driven at 100MHz. At a low power of 30W, the discharge is dominated by the first two harmonics. The higher harmonic excitations and the nonlinear standing waves are observed to be enhanced with increasing the rf power, resulting in a more pronounced central peak in the radial profiles of the total electron power absorption density pe, the electron temperature Te, and the electron density ne. For all rf powers, the calculated radial profiles of ne show good agreement with the experimental data obtained by a floating double probe.


2021 ◽  
Vol 239 ◽  
pp. 109844
Author(s):  
Aitor Saenz-Aguirre ◽  
Alain Ulazia ◽  
Gabriel Ibarra-Berastegui ◽  
Jon Saenz

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1712
Author(s):  
Chan Roh ◽  
Yoon-Jin Ha ◽  
Seungh-Ho Shin ◽  
Kyong-Hwan Kim ◽  
Ji-Yong Park

An integrated analysis is required to evaluate the performance of control algorithms used in power take-off (PTO) systems for floating wave energy converters (FWECs). However, research on PTO systems based on the existing hydraulic device has mainly focused on the input power generation performance rather than on obtaining maximum power through hydraulic device-based electrical load control. The power generation performance is analyzed based on the control variables of the existing torque control algorithm (TCA); however, the amount of power generation for each control variable changes significantly based on the cycle of wave excitation moments. This paper proposes a control algorithm to obtain the maximum power by modeling a hydraulic-device-based integrated FWEC. It also proposes a TCA that can obtain the maximum power regardless of the period of wave excitation moment. The proposed TCA continuously monitors the power generation output and changes the PTO damping coefficient in the direction in which the power generation output can be increased. The proposed TCA increased the output power generation by up to 18% compared to each PTO damping coefficient of the conventional TCA. Thus, the proposed method results in higher power generation regardless of the wave excitation moment cycle and performs better than the existing torque control algorithm.


2021 ◽  
Author(s):  
Modestos Athanasiou ◽  
Paris Papagiorgis ◽  
Andreas Manoli ◽  
Caterina Bernasconi ◽  
Maryna Bodnarchuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document