Zircon Petrochronology of the Meghri-Ordubad Pluton, Lesser Caucasus: Fingerprinting Igneous Processes and Implications for the Exploration of Porphyry Cu-Mo Deposits

2019 ◽  
Vol 114 (7) ◽  
pp. 1365-1388 ◽  
Author(s):  
Hervé Rezeau ◽  
Robert Moritz ◽  
Jörn-Frederik Wotzlaw ◽  
Samvel Hovakimyan ◽  
Rodrik Tayan

Abstract The trace element composition of zircon, especially in tandem with U-Pb geochronology, has become a powerful tool for tracing magmatic processes associated with the formation of porphyry copper deposits. However, the use of the redox-sensitive Eu and Ce anomalies as a potential mineral exploration proxy is controversial. This study presents a comprehensive, temporally constrained data set of zircon trace element compositions (n = 645) for three compositionally distinct magmatic series identified in the Meghri-Ordubad pluton, southernmost Lesser Caucasus. The 30 million years of Cenozoic magmatism in the Meghri-Ordubad pluton are associated with several ore-forming pulses leading to the formation of porphyry copper deposits and epithermal-style mineralization. Our zircon geochemical data constrain the thermal and chemical evolution of this complex intrusive suite and allow an evaluation of the usefulness of zircon as a mineral exploration proxy for porphyry copper deposits. Our results combined with Rayleigh fractionation modeling indicate that the trace element composition of zircon (Th/U, Hf, Ti, YbN/DyN, Eu anomalies) is influenced by the composition and the water concentration of the parental magma, as well as by co-crystallizing titanite and apatite. In contrast, the variations of Ce anomalies remain difficult to explain by magmatic processes and could rather be ascribed to relative fluctuations of the redox conditions. In the Meghri-Ordubad pluton, we do not observe any systematic patterns between the trace element composition in zircons and the different ore-forming pulses. This questions the reliability of using the trace element composition in zircon as an exploration mineral proxy, and it rather emphasizes that a good knowledge of the entire magmatic evolution of a metallogenic province is required.

2018 ◽  
Vol 54 (2) ◽  
pp. 991-1012 ◽  
Author(s):  
Jie Zhou ◽  
Sanzhong Li ◽  
Genhou Wang ◽  
M. Santosh ◽  
Li Zhang ◽  
...  

2021 ◽  
Author(s):  
Lin Gong ◽  
Barry P. Kohn ◽  
Zhiyong Zhang ◽  
Bing Xiao ◽  
Lin Wu ◽  
...  

Abstract Paleozoic porphyry copper deposits are generally much less common than their Mesozoic or Cenozoic counterparts, as they can be completely eroded in rapidly uplifting arcs. There are, however, some large Paleozoic porphyry copper deposits preserved worldwide, especially in the Central Asian orogenic belt, although the processes by which these ancient porphyry deposits were preserved are poorly constrained. The Carboniferous Yandong porphyry copper deposit was selected as a case study to resolve this issue using a combination of thermal history models derived from low-temperature thermochronology data and regional geologic records. Our results show that Yandong preserves a record of at least two episodes of cooling separated by a phase of mild Middle Jurassic reheating. These two cooling events included one major event, linked to the Qiangtang collision or northward motion of Tarim plate during the late Permian to Triassic, and one minor event, possibly related to the Lhasa collision or closure of Mongol-Okhotsk Ocean from the Middle Jurassic to Early Cretaceous, respectively. Tectonic quiescence and limited exhumation prevailed from the Late Cretaceous to Cenozoic in the Yandong area. Combining our results with regional geologic records, we propose that extensional tectonic subsidence, postmineralization burial, dry paleoclimatic conditions, and Cenozoic tectonic quiescence were key factors for the preservation of Yandong. This study demonstrates that anomalously old apatite fission track ages, integrated with age-elevation relationships, can have implications for mineral exploration strategies in the Chinese Tianshan orogens.


Sign in / Sign up

Export Citation Format

Share Document