trace element composition
Recently Published Documents


TOTAL DOCUMENTS

469
(FIVE YEARS 164)

H-INDEX

46
(FIVE YEARS 4)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 105
Author(s):  
Vasily Shcherbakov ◽  
Ilya Bindeman ◽  
Viktor Gazeev

Significant volumes of rhyolites and granites of the Pliocene-Pleistocene age are exposed in the collision zone of the Greater Caucasus, Russia. The volcanic history of the region includes ignimbrites and lavas associated with the Chegem caldera (2.9 Ma) and Elbrus volcano (1.98 and 0.7 Ma) and rhyolitic necks and granites in Tyrnyauz (1.98 Ma). They are characterized by a similar bulk and mineral composition and close ratios of incompatible elements, which indicates their related origin. The 1.98 Ma Elbrus ignimbrites, compared to the 2.9 Ma Chegem ignimbrites, have elevated concentrations of both compatible (Cr, Sr, Ca, Ni) and incompatible elements (Cs, Rb, U). We argue that the Elbrus ignimbrites were produced from magma geochemically similar to Chegem rhyolites through fractionation crystallization coupled with the assimilation of crustal material. The 1.98 Ma Eldjuta granites of Tyrnyauz and early ignimbrites of the Elbrus region (1.98 Ma) are temporally coeval, similar mineralogically, and have comparable major and trace element composition, which indicates that the Elbrus ignimbrites probably erupted from the area of modern Tyrnyauz; the Eldjurta granite could represent a plutonic reservoir that fed this eruption. Late ignimbrites of Elbrus (0.7 Ma) and subsequent lavas demonstrate progressively more mafic mineral assemblage and bulk rock composition in comparison with rhyolites. This indicates their origin in response to the mixing of rhyolites with magmas of a more basic composition at the late stage of magma system development. The composition of these basic magmas may be close to the basaltic trachyandesite, the flows exposed along the periphery of the Elbrus volcano. All studied young volcanic rocks of the Greater Caucasus are characterized by depletion in HSFE and enrichment in LILE, Li, and Pb, which emphasizes the close relationship of young silicic magmatism with magmas of suprasubduction geochemical affinity. An important geochemical feature is the enrichment of U up to 8 ppm and Th up to 35 ppm. The trace element composition of the rocks indicates that the original rhyolitic magma of Chegem ignimbrites caldera was formed at >80%–90% fractionation of calc-alkaline arc basalts with increased alkalinity. This observation, in addition to published data for isotopic composition (O-Hf-Sr) of the same units, shows that the crustal isotopic signatures of silicic volcanics may arise due to the subduction-induced fertilization of peridotites producing parental basaltic magmas before a delamination episode reactivated the melting of the former mantle and the lower crust.


2021 ◽  
Vol 82 (3) ◽  
pp. 55-57
Author(s):  
Milena Georgieva

Asenitsa unit metapelites (Central Rhodope massif) have a high variability in mineral, bulk chemical and trace element composition. Kyanite, staurolite and garnet are the major minerals in schists and show intensive retrograde change. Discrimination diagrams based on immobile trace elements indicate continental island arc or active margin setting of deposition.


2021 ◽  
Vol 937 (2) ◽  
pp. 022074
Author(s):  
A Litvinenko ◽  
N Khristoforova ◽  
V Tsygankov ◽  
M Kovalchuk

Abstract The study is devoted to the microelement composition of organs and tissues of chum salmon (Oncorhynchus keta), which came for spawning in September 2018 in the r. Lovetskaya on the southwestern coast of Sakhalin. Samples of organs and tissues of fish, prepared in Sakhalin, were frozen and delivered to Vladivostok for chemical analysis. Trace elements were determined from acid mineralizates by atomic absorption on a Shimadzu AA 6800. It was found that the content of microelements indicating anthropogenic impact on the environment (Zn, Cu and Ni) in the Sea of Japan chum was significantly higher than the content of those in the Okhotsk Sea fish. So, for example, the amount of zinc in the muscles of the Sea of Japan chum salmon was 2.5 times higher than in those of the Sea of Okhotsk fish. In the liver, the effect was even greater - the difference between the content of this element in the Sea of Japan and the Sea of Okhotsk reached 19 times. At the same time, in the organs and tissues of the Okhotsk chum salmon, which crossed the impact geochemical zone in the Kuril-Kamchatka region at least twice during its life cycle, the content of lead and cadmium, witnesses of underwater and surface volcanism in the Kuril straits, prevailed. The content of lead in the muscles of chum salmon from r. Raidovaya was 4 times more than in the muscles of chum salmon from the river. Lovetskaya; in the liver, the difference was 5 times.


2021 ◽  
Vol 116 (8) ◽  
pp. 1865-1892
Author(s):  
Marjorie Sciuba ◽  
Georges Beaudoin

Abstract Rutile from a wide range of orogenic gold deposits and districts, including representative world-class deposits, was investigated for its texture and trace element composition using scanning electron microscopy, electron probe microanalysis, and laser ablation-inductively coupled plasma-mass spectrometry. Deposits are hosted in various country rocks including felsic to ultramafic igneous rocks and sedimentary rocks, which were metamorphosed from lower greenschist to middle amphibolite facies and with ages of mineralization that range from Archean to Phanerozoic. Rutile presents a wide range of size, texture, and chemical zoning. Rutile is the dominant TiO2 polymorph in orogenic gold mineralization. Elemental plots and partial least square-discriminant analysis suggest that the composition of the country rocks exerts a strong control on concentrations of V, Nb, Ta, and Cr in rutile, whereas the metamorphic facies of the country rocks controls concentrations of V, Zr, Sc, U, rare earth elements, Y, Ca, Th, and Ba in rutile. The trace element composition of rutile in orogenic gold deposits can be distinguished from rutile in other deposit types and geologic settings. Elemental ratios Nb/V, Nb/Sb, and Sn/V differentiate the rutile trace element composition of orogenic gold deposits compared with those from other geologic settings and environments. A binary plot of Nb/V vs. W enables distinction of rutile in metamorphic-hydrothermal and hydrothermal deposits from rutile in magmatic-hydrothermal deposits and magmatic environments. The binary plot Nb/Sb vs. Sn/V distinguishes rutile in orogenic gold deposits from other geologic settings and environments. Results are used to establish geochemical criteria to constrain the source of rutile for indicator mineral surveys and potentially guide mineral exploration.


Author(s):  
Vladimir Yu. Koval ◽  
◽  
Andrey Dmitriev ◽  
Olesia Chepurchenko ◽  
Iuliia Filina ◽  
...  

The paper presents the results of studying the composition of pottery by neutron activation analysis (involving X-ray fluorescence analysis). The study was based on samples of pottery made from highly ferrous (red-burning) clays originating from archaeological sites investigated in the territory of medieval Rus (Moscow and Ryazan Land) and the Volga River region (the Bolgar and Selitrennoye fortified settlements). They were compared with pottery samples from Byzantium and other regions (the Caucasus, Central Asia). A set of trace elements was identified whose content differs significantly in the pottery of different regions of Eastern Europe and differs also from the pottery of neighbouring countries. Cluster analysis confirmed the presence of noticeable differences in the trace element composition of clay masses from which medieval pottery were made. The results obtained allow the authors to admit the possibility of determining the origin of pottery by its trace element composition, at least at the level of large territories. Within these territories, differences in the composition of pottery have not yet been revealed.


Geology ◽  
2021 ◽  
Author(s):  
Hepeng Tian ◽  
Majie Fan ◽  
Victor A. Valencia ◽  
Kevin Chamberlain ◽  
Robert J. Stern ◽  
...  

A Paleozoic arc that formed by southward subduction of the Rheic oceanic plate beneath northern Gondwana has long been inferred, but its history and geochemical signatures remain poorly understood. New U-Pb ages, juvenile εHf signatures, and trace-element composition data of young zircons from tuffs at two southern Laurentia sites indicate their derivation from a continental arc that was active from ca. 328 to ca. 317 Ma and permit correlation of sedimentary sequences 800 km apart in southern Laurentia. These include the Stanley tuffs in the Ouachita Mountains of southeastern Oklahoma and southwestern Arkansas and the newly discovered Barnett tuff in the subsurface of the Midland Basin in west Texas (USA). The Barnett tuff has a zircon chemical abrasion–isotope dilution–thermal ionization mass spectrometry U-Pb date of 327.8 ± 0.8 Ma, similar to the oldest Stanley tuff in the Ouachita Mountains. Zircon Hf isotope depleted mantle model ages further suggest that the source was a continental arc on basement with both Grenville and Pan-African affinities, pointing to northern Gondwana or peri-Gondwana terranes. The new data link the tuffs to granitoids (326 Ma) of the Maya block in southern Mexico, which was part of northern Gondwana. Correlation of the Stanley-Barnett tuffs across southern Laurentia suggests the likely presence of Mississippian tuffs over a broad region in southern Laurentia, and their usefulness for constraining absolute ages of basin fills and characterizing the Gondwanan arc.


2021 ◽  
Vol 176 (12) ◽  
Author(s):  
Jonas M. Pedersen ◽  
Thomas Ulrich ◽  
Martin J. Whitehouse ◽  
Adam J. R. Kent ◽  
Christian Tegner

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1266
Author(s):  
Zahid Hussain ◽  
Chunhui Tao ◽  
Chun-Feng Li ◽  
Shili Liao ◽  
Masroor Alam ◽  
...  

The Kargah Cu-Pb polymetallic deposit is a newly discovered ore deposit from the Gilgit-Baltistan region, located in the Kohistan Island Arc, northern Pakistan. However, this area is poorly researched on the ore genesis, and its origin and the evolution of its magmatic-hydrothermal system remain unclear. Three stages of mineralization were identified, including quartz-pyrite, quartz-sulfide, and carbonate representing early, middle, and late stages, respectively. The major ore minerals are pyrite, chalcopyrite, galena, and zincian tetrahedrite with minor native silver, and native gold mainly distributed in pyrite. Here, we present a systematic study on ore geology, hydrothermal alterations, trace element composition of pyrite, fluid inclusions, and isotopes (S and Pb) characteristics to gain insights into the nature of the ore-forming fluids, types of unknown deposits, and hydrothermal fluid evolution. The high Co/Ni ratio (1.3–16.4) and Co content (average 1201 ppm), the low Mo/Ni ratio (0.43–0.94) and Mo contents (average 108 ppm) of both Py-I and Py-II suggest a mafic source for the mineralization. The Au-Ni plots, Co-As-Ni correlation, and the δ34S values range from −2.8 to 6.4‰ (average of 3.4‰) indicating the affiliation of the mineralization with a mantle-derived magmatic-hydrothermal provenance. The Pb isotope data showing the narrow variations in 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values suggest a single lead source from crustal-derived materials. The microthermometry data suggest that the dominant mechanisms are fluid boiling and mixing for mineral precipitation at temperatures ranging between 155 and 555 °C, and represent an intrusion-related magmatic-hydrothermal environment for the Kargah Cu-Pb polymetallic deposit.


2021 ◽  
Vol 24 (3-4) ◽  
pp. 125-136
Author(s):  
Jean-Marc BAELE ◽  
Hassan BOUZAHZAH ◽  
Séverine PAPIER ◽  
Sophie DECRÉE ◽  
Sophie VERHEYDEN ◽  
...  

Laser-Induced Breakdown Spectroscopy (LIBS) is a fast in-situ analytical technique based on spectroscopic analysis of atomic emission in laser-induced plasmas. Geochemical mapping at macroscopic scale using LIBS was applied to a decimetric Zn-Pb ore sample from east Belgium, which consists of alternating sphalerite and galena bands. A range of elements was detected with no or minimal spectral correction, including elements of interest for beneficiation such as Ge, Ag and Ga (although the detection of gallium could not be confirmed), and remediation, especially As and Tl. The comparison between LIBS and Energy Dispersive Spectroscopy (EDS) analyses showed that LIBS intensities reliably relate to elemental concentration although differences in spot size and detection limits exist between both techniques. The elemental images of minor and trace elements (Fe, Cu, Ag, Cd, Sb, As, Tl, Ge, Ni and Ba) obtained with LIBS revealed with great detail the compositional heterogeneity of the ore, including growth zones that were not visible on the specimen. In addition, each mineral generation has a distinct trace-element composition, reflecting a geochemical sequence whose potential metallogenic significance at the district scale should be addressed in further work. Although qualitative and preliminary, the obtained LIBS dataset already produced a wealth of information that allowed to initiate discussion on some genetical and crystallochemical aspects. Above all, LIBS appears as a powerful tool for screening geochemically large samples for the selection of zones of particular interest for further analysis.


Sign in / Sign up

Export Citation Format

Share Document