scholarly journals Benthic and periphytic invertebrate contour groups in techno-ecosystems of power plants of Ukraine

2021 ◽  
Author(s):  
A. Protasov ◽  
◽  
A. Sylaieva ◽  
T. Novoselova ◽  
I. Morozovskaya ◽  
...  

Based on many years of research experience of water techno-ecosystems of thermal and nuclear power plants a brief review of the main patterns of formation of the composition, cenotic structure, elements of the functional organization of benthos and periphyton communities was made. It was shown that the composition of zoobenthos and zooperiphyton in some cooling ponds, other technical water bodies and watercourses was quite rich. In addition, due to the rather intensive invasive process, the list of taxa is constantly expanding. Species of tropical and subtropical origin have been recorded. Of particular importance is the invasion of species that may be the cause of bio-hindrances in the operation of power plant equipment. Techno-ecosystems have been studied to varying degrees. One of the most studied for a long time are the cooling ponds of Khmelnitsky and Chernobyl nuclear power plants. Hydrobiological research and monitoring at the first one has been carried out for more than 20 years. It was found that the influence of biotic invasion (invasion of Dreissenidae) may have a significant impact, comparable to extreme technogenic factors, on both the ecosystem and technical water supply facilities. The stages of contourisation and decontourisation processes in the Khmelnitsky NPP techno-ecosystem were established. At the Chernobyl NPP cooling pond, studies were carried out during all periods of the existence of the reservoir and the power plant, until the process of uncontrolled pond descent and transforming it into a unique wetland. Based on the obtained data, practical recommendations relating to the organization of hydrobiological and environmental monitoring, as well as reducing biological hindrances and improving the reliability of power plant equipment have been developed.

Author(s):  
He Dan ◽  
Zhang Yue

Nuclear power plant is composed of many structures, systems and components. In the design and development of nuclear power plants, in order to improve their safety, more and more designers realized that the standards and methods of design, manufacture and supervision of nuclear facilities and equipment have changed a lot. In the new period, facing the deteriorating environment, green, safety and environmental protection are all the things we have to pursue in our real life. Therefore, it is urgent to develop clean and efficient nuclear power sources and focus on improving the safety, reliability and economy of nuclear power plants. For extreme accidents that are extremely unlikely, the equipment of nuclear power plant should be kept safe and worthy of further exploration under the design extension conditions. In order to ensure nuclear safety, according to the practical experience at home and abroad and the practice of new nuclear power plant, it is proposed to improve the safety classification theory and method of nuclear power plant equipment. At the same time, combined with the in service inspection, equipment identification, quality assurance requirements, maintainability and technical maturity of nuclear power plant equipment, we comprehensively and deeply study the safety classification of nuclear power plant equipment.


Author(s):  
Greg C. Alder ◽  
Frank J. Todd

With the combination of increased demand for electric power and advancing age of operating equipment in nuclear power plants, is more important than ever to monitor the condition of plant operation. There are many factors to monitor in nuclear power plant equipment condition. However, one that is frequently overlooked is thermal performance. Often this is an area where plant personnel can find “low hanging fruit” with great return on investment. Often thermal performance analysis can discover better methods to maintain critical plant equipment resulting in more efficient outage activities. Plants also benefit from increasing their operators’ awareness of the importance of thermal performance monitoring to find lost power generation. This paper will discuss proven methods to track, trend, and prioritize thermal performance issues in order to reduce the time from the occurrence of a loss to recovery.


2020 ◽  
Vol 178 ◽  
pp. 01008
Author(s):  
Mikle Egorov ◽  
Anastasiya Ukolova ◽  
Ivan Kovalenko ◽  
Irina Krectunova ◽  
Nataliya Lavrovskaya ◽  
...  

It is possible to increase the efficiency of the nuclear power plants equipment in various ways. In particular, one of the most relevant is the active use of computer modeling at different stages of work. The effectiveness the software package used directly affects the quality of the installation equipment. Depending on the stage at which the software package is used, it has various priority properties for the most effective application.


2021 ◽  
Author(s):  
Li Liang ◽  
Pan Rong ◽  
Ren Guopeng ◽  
Zhu Xiuyun

Abstract Almost all nuclear power plants in the world are equipped with seismic instrument system, especially the third generation nuclear power plants in China. When the ground motion measured by four time history accelerometers of containment foundation exceeds the preset threshold, the automatic shutdown trigger signal will be generated. However, from the seismic acceleration characteristics, isolated and prominent single high frequency will be generated the acceleration peak, which has no decisive effect on the seismic response, may cause false alarm, which has a certain impact on the smooth operation of nuclear power plant. According to the principle of three elements of ground motion, this paper puts forward a method that first selects the filtering frequency band which accords with the structural characteristics of nuclear power plants, then synthesizes the three axial acceleration time history, and finally selects the appropriate acceleration peak value for threshold alarm. The results show that the seismic acceleration results obtained by this method can well represent the actual magnitude of acceleration, and can solve the problem of false alarm due to the randomness of single seismic wave, and can be used for automatic reactor shutdown trigger signal of seismic acceleration.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022020
Author(s):  
Jiahuan Yu ◽  
Xiaofeng Zhang

Abstract With the development of the nuclear energy industry and the increasing demand for environmental protection, the impact of nuclear power plant radiation on the environment has gradually entered the public view. This article combs the nuclear power plant radiation environmental management systems of several countries, takes the domestic and foreign management of radioactive effluent discharge from nuclear power plants as a starting point, analyses and compares the laws and standards related to radioactive effluents from nuclear power plants in France, the United States, China, and South Korea. In this paper, the management improvement of radioactive effluent discharge system of Chinese nuclear power plants has been discussed.


2018 ◽  
Vol 4 (4) ◽  
pp. 251-256 ◽  
Author(s):  
Sergey Shcheklein ◽  
Ismail Hossain ◽  
Mohammad Akbar ◽  
Vladimir Velkin

Bangladesh lies in a tectonically active zone. Earlier geological studies show that Bangladesh and its adjoining areas are exposed to a threat of severe earthquakes. Earthquakes may have disastrous consequences for a densely populated country. This dictates the need for a detailed analysis of the situation prior to the construction of nuclear power plant as required by the IAEA standards. This study reveals the correlation between seismic acceleration and potential damage. Procedures are presented for investigating the seismic hazard within the future NPP construction area. It has been shown that the obtained values of the earthquake’s peak ground acceleration are at the level below the design basis earthquake (DBE) level and will not lead to nuclear power plant malfunctions. For the most severe among the recorded and closely located earthquake centers (Madhupur) the intensity of seismic impacts on the nuclear power plant site does not exceed eight points on the MSK-64 scale. The existing predictions as to the possibility of a super-earthquake with magnitude in excess of nine points on the Richter scale to take place on the territory of the country indicate the necessity to develop an additional efficient seismic diagnostics system and to switch nuclear power plants in good time to passive heat removal mode as stipulated by the WWER 3+ design. A conclusion is made that accounting for the predicted seismic impacts in excess of the historically recorded levels should be achieved by the establishment of an additional efficient seismic diagnostics system and by timely switching the nuclear power plants to passive heat removal mode with reliable isolation of the reactor core and spent nuclear fuel pools.


Sign in / Sign up

Export Citation Format

Share Document