The effect of sodium zirconium cyclosilicate on acid-base balance in chronic kidney disease

2021 ◽  
Author(s):  
Daisuke Mori ◽  
Yuta Namiki ◽  
Ayaka Sugimachi ◽  
Manabu Kado ◽  
Shinjiro Tamai ◽  
...  
2021 ◽  
Vol 39 (Supplement 1) ◽  
pp. e298
Author(s):  
Giuseppe Mule’ ◽  
Caterina Carollo ◽  
Alessandra Sorce ◽  
Marta Giambrone ◽  
Alida Ferrara ◽  
...  

2020 ◽  
Vol 68 (2) ◽  
pp. 169-176
Author(s):  
Piotr Sławuta ◽  
Agnieszka Sikorska-Kopyłowicz ◽  
Grzegorz Sapikowski

AbstractMetabolic acidosis is diagnosed based on the concentration of bicarbonate ions and partial pressure of carbon dioxide in arterial blood, although acid–base balance (ABB) disorders may also be diagnosed based on the serum ion concentrations in order to determine the values of strong ion difference (SID), anion gap (AG), corrected anion gap (AGcorr) and chloride/sodium ratio (Cl−/Na+). The aim of this study was to assess and compare the classic model, the value of the AG, AGcorr, and Cl−/Na+ in the diagnosis of ABB disorders in cats with chronic kidney disease (CKD). The study group consisted of 80 cats with CKD, divided into four groups based on the guidelines of the International Renal Interest Society (IRIS). The control group (C) included 20 healthy cats. Metabolic acidosis – diagnosed based on the classic model (Hendersson–Hasselbalch equation) – was found in IRIS group IV. AG, AGcorr, SID calculated for IRIS groups II, III and IV were lower than in group C, while the value of AGdiff and Cl−/Na+ in those groups was higher than in group C. We can conclude that ABB analysis using the classic model enabled the detection of ABB disorders in cats in stage IV CKD. However, the analysis of the AG, AGcorr and Cl−/Na+ values enabled the diagnosis of acid–base balance disorders in cats with IRIS stage II, III and IV CKD.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Marios Papasotiriou ◽  
Adamantia Mpratsiakou ◽  
Georgia Georgopoulou ◽  
Lamprini Balta ◽  
Paraskevi Pavlakou ◽  
...  

Abstract Background and Aims Crystalline solutions, such as normal saline 0.9% (N/S 0.9%) and Ringer's Lactate (L/R), are readily administered for increasing plasma volume. Despite the utility of administering N/S 0.9% to hypovolemic patients, the dose of 154 mmol of sodium (Na) contained in 1 L exceeds the recommended daily dose increasing the risk of sodium overload and hyperchloremic metabolic acidosis. In contrast, L/R solution has the advantage of lower Na content, significantly less chlorine and contains lactates which may be advantageous in patients with significant acidemia such as patients with acute kidney injury (AKI) and chronic kidney disease (CKD). The aim of the present study is to investigate the safety and efficacy of administration of L/R versus N/S 0.9% in patients with prerenal AKI and established CKD. Method The study included adult patients with known CKD stage II to V without need for dialysis, with prerenal AKI (AKIN Stage I to III Criteria). Patients with other forms of AKI as well as hypervolemia, heart congestion or hyperkalemia (serum K>5.5 meq/l) were excluded from the study. Patients were randomized in 1:1 ratio to receive intravenously either N/S 0.9% or L/R solution at a dose of 20 ml/kg body weight/day. We studied kidney function (eGFR: CKD-EPI) and response to treatment at discharge and at 30 days after discharge, duration of hospitalization, improvement in serum bicarbonate levels (HCO3), acid-base balance, serum potassium levels and the need for dialysis. Results The study included 26 patients (17 males) with a mean age of 59.1 ± 16.1 years. Thirteen patients received treatment with N/S 0.9% and the rest with L/R solution. Baseline demographic and clinical characteristics at hospital admission and historical data did not show any significant differences in both groups of patients. Renal function at the onset of AKI did not show significant differences between the two groups (16.4 ± 5.8 vs 16.9 ± 5.7 ml/min/1.73 m2, p=ns, treatment with N/S and L/R respectively). The mean volume of solutions received by the two groups (N/S 0.9% 1119 ± 374 vs L/R 1338 ± 364 ml/day, p=ns) as well as the mean total volume of liquids received per day, did not differ significantly (2888 ± 821 vs 3069 ± 728 ml/d, p=ns). Patients treated with L/R were discharged 1 day earlier than patients treated with N/S (5.2 ± 3.2 vs 6.2 ± 4.9 days of hospitalization, p=ns). Renal function improvement during hospitalization and 30 days after discharge did not differ significantly between the two groups. Patients that received L/R showed a higher increase in plasma HCO3 (ΔHCO3) concentration at discharge than those that received N/S 0.9% (4.9 ± 4.1 vs 2.46 ± 3.7 meq/l, p=ns) and pH increase (ΔpH) was slightly higher in those that received L/R solution (0.052 ± 0.066 vs 0.023 ± 0.071, p=ns). Patients treated with N/S 0.9% showed a greater decrease in serum potassium (ΔK) at discharge compared to those treated with L/R (-0.39 ± 1.03 vs -0.17 ± 0.43 meq/l, p=ns, respectively). No patient received acute dialysis treatment. Conclusion Administration of L/R solution as a hydration treatment to patients with prerenal AKI and established CKD is not inferior concerning safety and efficacy to N/S 0.9% solution. In addition, L/R administration seems to marginally improve acid-base balance in this specific group of patients.


2019 ◽  
Vol 39 (4) ◽  
pp. 406-417 ◽  
Author(s):  
Wei Chen ◽  
David S. Levy ◽  
Matthew K. Abramowitz

2021 ◽  
Vol 8 ◽  
Author(s):  
Cathy Langston ◽  
Daniel Gordon

Intravenous fluid therapy has long been the mainstay of treatment of kidney disease, including acute kidney injury and uremic crisis associated with chronic kidney disease. Careful management of fluid dose is critical, as animals with kidney disease may have marked derangements in their ability to regulate fluid homeostasis and acid-base status. Understanding of the physiology of renal fluid handling is necessary, along with repeated attention to parameters of fluid status, electrolytes, and acid-base balance, to achieve optimal hydration status and avoid further damage or decrease in function from dehydration or overhydration.


Sign in / Sign up

Export Citation Format

Share Document