scholarly journals AVD Proper Edge-Coloring of some Cycle Related Graphs

Author(s):  
J NAVEEN
2012 ◽  
Vol 04 (04) ◽  
pp. 1250047 ◽  
Author(s):  
AIJUN DONG ◽  
GUANGHUI WANG

A proper [k]-edge coloring of a graph G is a proper edge coloring of G using colors of the set [k] = {1, 2,…,k}. A neighbor sum distinguishing [k]-edge coloring of G is a proper [k]-edge coloring of G such that for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. By ndiΣ(G), we denote the smallest value k in such a coloring of G. In this paper, we obtain that (1) ndiΣ(G) ≤ max {2Δ(G) + 1, 25} if G is a planar graph, (2) ndiΣ(G) ≤ max {2Δ(G), 19} if G is a graph such that mad(G) ≤ 5.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050035
Author(s):  
Danjun Huang ◽  
Xiaoxiu Zhang ◽  
Weifan Wang ◽  
Stephen Finbow

The adjacent vertex distinguishing edge coloring of a graph [Formula: see text] is a proper edge coloring of [Formula: see text] such that the color sets of any pair of adjacent vertices are distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of [Formula: see text] is denoted by [Formula: see text]. It is observed that [Formula: see text] when [Formula: see text] contains two adjacent vertices of degree [Formula: see text]. In this paper, we prove that if [Formula: see text] is a planar graph without 3-cycles, then [Formula: see text]. Furthermore, we characterize the adjacent vertex distinguishing chromatic index for planar graphs of [Formula: see text] and without 3-cycles. This improves a result from [D. Huang, Z. Miao and W. Wang, Adjacent vertex distinguishing indices of planar graphs without 3-cycles, Discrete Math. 338 (2015) 139–148] that established [Formula: see text] for planar graphs without 3-cycles.


2013 ◽  
Vol 333-335 ◽  
pp. 1452-1455
Author(s):  
Chun Yan Ma ◽  
Xiang En Chen ◽  
Fang Yang ◽  
Bing Yao

A proper $k$-edge coloring of a graph $G$ is an assignment of $k$ colors, $1,2,\cdots,k$, to edges of $G$. For a proper edge coloring $f$ of $G$ and any vertex $x$ of $G$, we use $S(x)$ denote the set of thecolors assigned to the edges incident to $x$. If for any two adjacent vertices $u$ and $v$ of $G$, we have $S(u)\neq S(v)$,then $f$ is called the adjacent vertex distinguishing proper edge coloring of $G$ (or AVDPEC of $G$ in brief). The minimum number of colors required in an AVDPEC of $G$ is called the adjacent vertex distinguishing proper edge chromatic number of $G$, denoted by $\chi^{'}_{\mathrm{a}}(G)$. In this paper, adjacent vertex distinguishing proper edge chromatic numbers of several classes of complete 5-partite graphs are obtained.


2021 ◽  
Vol 41 (2) ◽  
pp. 245-257
Author(s):  
Mohammad R. Piri ◽  
Saeid Alikhani

We introduce and study the dominated edge coloring of a graph. A dominated edge coloring of a graph \(G\), is a proper edge coloring of \(G\) such that each color class is dominated by at least one edge of \(G\). The minimum number of colors among all dominated edge coloring is called the dominated edge chromatic number, denoted by \(\chi_{dom}^{\prime}(G)\). We obtain some properties of \(\chi_{dom}^{\prime}(G)\) and compute it for specific graphs. Also examine the effects on \(\chi_{dom}^{\prime}(G)\), when \(G\) is modified by operations on vertex and edge of \(G\). Finally, we consider the \(k\)-subdivision of \(G\) and study the dominated edge chromatic number of these kind of graphs.


2020 ◽  
Author(s):  
Aleffer Rocha ◽  
Sheila M. Almeida ◽  
Leandro M. Zatesko

Rainbow coloring problems, of noteworthy applications in Information Security, have been receiving much attention last years in Combinatorics. The rainbow connection number of a graph G is the least number of colors for a (not necessarily proper) edge coloring of G such that between any pair of vertices there is a path whose edge colors are all distinct. In this paper we determine the rainbow connection number of the triple triangular snake graphs.


10.37236/705 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Carl Johan Casselgren

A proper edge coloring of a graph $G$ with colors $1,2,3,\dots$ is called an interval coloring if the colors on the edges incident with any vertex are consecutive. A bipartite graph is $(3,4)$-biregular if all vertices in one part have degree $3$ and all vertices in the other part have degree $4$. Recently it was proved [J. Graph Theory 61 (2009), 88-97] that if such a graph $G$ has a spanning subgraph whose components are paths with endpoints at 3-valent vertices and lengths in $\{2, 4, 6, 8\}$, then $G$ has an interval coloring. It was also conjectured that every simple $(3,4)$-biregular bipartite graph has such a subgraph. We provide some evidence for this conjecture by proving that a simple $(3,4)$-biregular bipartite graph has a spanning subgraph whose components are nontrivial paths with endpoints at $3$-valent vertices and lengths not exceeding $22$.


10.37236/1474 ◽  
1999 ◽  
Vol 6 (1) ◽  
Author(s):  
Martin Juvan ◽  
Bojan Mohar ◽  
Robin Thomas

It is proved that for every integer $k\ge3$, for every (simple) series-parallel graph $G$ with maximum degree at most $k$, and for every collection $(L(e):e\in E(G))$ of sets, each of size at least $k$, there exists a proper edge-coloring of $G$ such that for every edge $e\in E(G)$, the color of $e$ belongs to $L(e)$.


Author(s):  
Vikram Srinivasan Thiru ◽  
S. Balaji

The strong edge coloring of a graph G is a proper edge coloring that assigns a different color to any two edges which are at most two edges apart. The minimum number of color classes that contribute to such a proper coloring is said to be the strong chromatic index of G. This paper defines the strong chromatic index for the generalized Jahangir graphs and the generalized Helm graphs.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1265
Author(s):  
Ming Chen ◽  
Lianying Miao ◽  
Shan Zhou

A strong edge coloring of a graph G is a proper edge coloring such that every color class is an induced matching. In 2018, Yang and Wu proposed a conjecture that every generalized Petersen graph P(n,k) with k≥4 and n>2k can be strong edge colored with (at most) seven colors. Although the generalized Petersen graph P(n,k) is a kind of special graph, the strong chromatic index of P(n,k) is still unknown. In this paper, we support the conjecture by showing that the strong chromatic index of every generalized Petersen graph P(n,k) with k≥4 and n>2k is at most 9.


Sign in / Sign up

Export Citation Format

Share Document