scholarly journals Similarity of lithospheric structure of central and northwestern part of the Indian Peninsula inferred from observed surface wave forms

MAUSAM ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 51-58
Author(s):  
S. N. BHATTACHARYA

Observed surface wave forms across the central part of the Indian Peninsula and across northwestern part of the Peninsula have been considered. In a previous work, using group velocity of surface waves across former religion revealed model lithosphere IP 11. Observed surface wave forms across these two regions have been compared with synthetic seismograms  using  model  IP 11. Observed wave forms are found to agree with synthetic one. This suggests that the average lithospheric structure of central and northwestern parts of the Indian Peninsula is similar and the Lithospheric model  IP 11 is an approximation to it

Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. A39-A43
Author(s):  
David F. Halliday ◽  
Taiwo Fawumi ◽  
Johan O. A. Robertsson ◽  
Ed Kragh

We investigated the use of seismic sensors as small seismic sources. A voltage signal is applied to a geophone that forces the mass within the geophone to move. The movement of the mass generates a seismic wavefield that was recorded with an array of geophones operating in the conventional sense. We observed higher-frequency (25 Hz and above) surface and body waves propagating from the geophone source at offsets of 10 s of meters. We further found that the surface waves emitted from geophone sources can be used to generate a surface-wave group velocity map. We discuss potential developments and future applications.


1973 ◽  
Vol 63 (4) ◽  
pp. 1305-1313
Author(s):  
S. T. Crough ◽  
R. Van der Voo

abstract Seismic events can be relocated relative to a reference event by using the group-velocity dispersion curves of surface waves. Since group velocity is a function of the travel path, surface waves from two events in the same locale should show identical group velocities when viewed at any one seismograph station. A computer technique has been developed for comparing the group-velocity curves of any event with the curves of a reference event and for determining the relocation which causes the curves to best coincide. The method is evaluated by relocating eight intermediate-size nuclear explosions of the Nevada Test Site series. With precise curve fitting, the surface-wave locations are slightly more accurate in southern Nevada than the standard body-wave determinations. The surface-wave origin times are considerably more accurate. In areas of sparse station coverage or of many small earthquakes, the surface-wave method can be expected to improve seismic locations significantly.


1999 ◽  
Vol 66 (2) ◽  
pp. 507-513 ◽  
Author(s):  
T.-T. Wu ◽  
Y.-Y. Chen

This paper presents the results on the utilization of a wavelet transform to study the dispersion of laser-generated surface waves in an epoxy-bonded copper-aluminum layered specimen with and without unbond areas. Laser ultrasonic experiments based on the point-source/point-receiver (PS/PR) technique were undertaken to measure surface wave signals in a layered specimen. The wavelet transform with a Morlet wavelet function was adopted to analyze the group velocity dispersion of the surface wave signals. A novel hybrid formula for group velocity dispersion is proposed for measurements across unbond regions. Results and data obtained are in good agreement with calculated and experimental dispersion curves. The general behavior of the group velocity dispersion for different measurement, configurations can be utilized to differentiate the unbond regions in a layered structure.


1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


Geophysics ◽  
2003 ◽  
Vol 68 (2) ◽  
pp. 677-684 ◽  
Author(s):  
Helle A. Pedersen ◽  
Jérôme I. Mars ◽  
Pierre‐Olivier Amblard

Surface waves are increasingly used for shallow seismic surveys—in particular, in acoustic logging, environmental, and engineering applications. These waves are dispersive, and their dispersion curves are used to obtain shear velocity profiles with depth. The main obstacle to their more widespread use is the complexity of the associated data processing and interpretation of the results. Our objective is to show that energy reassignment in the time–frequency domain helps improve the precision of group velocity measurements of surface waves. To show this, full‐waveform seismograms with added white noise for a shallow flat‐layered earth model are analyzed by classic and reassigned multiple filter analysis (MFA). Classic MFA gives the expected smeared image of the group velocity dispersion curve, while the reassigned curve gives a very well‐constrained, narrow dispersion curve. Systematic errors from spectral fall‐off are largely corrected by the reassignment procedure. The subsequent inversion of the dispersion curve to obtain the shear‐wave velocity with depth is carried out through a procedure combining linearized inversion with a nonlinear Monte Carlo inversion. The diminished uncertainty obtained after reassignment introduces significantly better constraints on the earth model than by inverting the output of classic MFA. The reassignment is finally carried out on data from a shallow seismic survey in northern Belgium, with the aim of determining the shear‐wave velocities for seismic risk assessment. The reassignment is very stable in this case as well. The use of reassignment can make dispersion measurements highly automated, thereby facilitating the use of surface waves for shallow surveys.


2001 ◽  
Vol 44 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Liang-Bao ZHU ◽  
Qing XU ◽  
Xiao-Fei CHEN

Sign in / Sign up

Export Citation Format

Share Document