scholarly journals Rainfall variability and probability pattern for crop planning of Roorkee region (Uttrakhand) of India

MAUSAM ◽  
2021 ◽  
Vol 61 (4) ◽  
pp. 509-516
Author(s):  
A. K. BHARGAVA ◽  
P. K. SINGH ◽  
VASU MITRA ◽  
AWADHESH PRASAD ◽  
M. JAYAPALAN
2014 ◽  
Vol 38 (2) ◽  
pp. 95-98 ◽  
Author(s):  
D. K. Jajoria ◽  
S. K. Sharma ◽  
G. P. Narolia ◽  
M. L. Dotaniya

2021 ◽  
Vol 22 (4) ◽  
pp. 509-517
Author(s):  
ADIKANT PRADHAN ◽  
T. CHANDRAKAR ◽  
S.K. NAG ◽  
A. DIXIT ◽  
S.C. MUKHERJEE

Analysis of long-term rainfall data (1986-2018) of Bastar region revealed decreasing trend in total quantum of annual rainfall with varying frequency and distribution. The quantity of winter and summer rains decreased drastically during 2008-18 as compared to earlier two decades (1986-96 and 1997-2007). SW monsoon rain of 2008-18 was more than past two decades, whereas NE monsoon rain changed much in quantity except during 1997-2007. During 1986-96, the pre-monsoon shower was received in April, but later two decades the shower was received in May, which supports for summer ploughing and dry aerobic seeding. The cropping period almost synchronized between 22-43 standard meteorological week (SMW) reaching 93.11 mm per week as maximum rainfall. As the probability of 20 mm rainfall decreased from 75 to 50%, the crop yield got reduced by 30%. The mid-land rice with a probability of 13.47 to 16.07 mm rain per week supported growth phase during 17-21SMW. Whereas, upland rice maturing in 90-100 days could avoid dry spells, if the rice is managed by conservation furrows at the time of sowing. The summer ploughing is preferred with more than 40 mm rain in single day during March to April for mitigating dry spells. On the other hand, preparatory tillage and sowing were performed together in support of ripening niger and horsegram under probability of 75, 50 and 25% rain through crop planning. Maize and small millets reduced yield  significantly when rainfall reached 75% deficit, whereas 25% deficit rain did not affect the yields.


MAUSAM ◽  
2021 ◽  
Vol 69 (1) ◽  
pp. 141-146
Author(s):  
ARVIND KUMAR ◽  
P. TRIPATHI ◽  
AKHILESH GUPTA ◽  
K. K. SINGH ◽  
P. K. SINGH ◽  
...  

2016 ◽  
Vol 67 (1) ◽  
pp. 61-69
Author(s):  
M Forouzangohar ◽  
R Setia ◽  
DD Wallace ◽  
CR Nitschke ◽  
LT Bennett

2014 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)
Keyword(s):  

Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 886
Author(s):  
Abdul Azim Amirudin ◽  
Ester Salimun ◽  
Fredolin Tangang ◽  
Liew Juneng ◽  
Muhamad Zuhairi

This study investigates the individual and combined impacts of El Niño and the positive Indian Ocean Dipole (IOD) on the Southeast Asia (SEA) rainfall variability. Using composite and partial correlation techniques, it is shown that both inter-annual events have individually distinct impacts on the SEA rainfall anomaly distribution. The results showed that the impacts of the co-occurrence of El Niño and IOD events are significant compared to the individual effects of pure El Niño or pure IOD. During June-July-August and September-October-November, the individual impacts of the pure El Niño and IOD events are similar but less significant. Both events caused negative impacts over the southern part of SEA during June-July-August (JJA) and propagated northeastward/eastward during September-October-November (SON). Thus, there are significant negative impacts over the southern part of SEA during the co-occurrence of both events. The differential impacts on the anomalous rainfall patterns are due to the changes in the sea surface temperature (SST) surrounding the region. Additionally, the differences are also related to the anomalous regional atmospheric circulations that interact with the regional SST. The anomalous Walker circulation that connects the Indian Ocean and tropical Pacific Ocean also plays a significant role in determining the regional anomalous rainfall patterns.


Sign in / Sign up

Export Citation Format

Share Document