scholarly journals Regional analysis of maximum rainfall using L-moment and LH-moment: A comparative case study for the northeast India

MAUSAM ◽  
2021 ◽  
Vol 68 (3) ◽  
pp. 451-462
Author(s):  
DHRUBA JYOTI BORA ◽  
MUNINDRA BORAH ◽  
ABHIJIT BHUYAN

Rainfall data of the northeast region of India has been considered for selecting best fit model for rainfall frequency analysis. The methods of L-moment has been employed for estimation of parameters five probability distributions, namely Generalized extreme value (GEV), Generalized Logistic(GLO), Pearson type 3 (PE3), 3 parameter Log normal (LN3) and Generalized Pareto (GPA) distributions. The methods of LH-moment of four orders (L1 L2, L3 & L4-moments) have also been used for estimating the parameters of three probability distributions namely Generalized extreme value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distributions. PE3 distribution has been selected as the best fitting distribution using L-moment, GPA distribution using L1-moment and GLO distribution using L2, L3 & L4-moments. Relative root mean square error (RRMSE) and RBIAS are employed to compare between the results found from L-moment and LH-moment analysis. It is found that GPA distribution designated by L1-moment method is the most suitable and the best fitting distribution for rainfall frequency analysis of the northeast India. Also the L1-moment method is significantly more efficient than L-moment and other orders of LH-moment for rainfall frequency analysis of the northeast India.

2017 ◽  
Vol 12 (1) ◽  
pp. 1-16
Author(s):  
Segel Ginting ◽  
William M Putuhena

The designstorm wereestimated by applying the regional frequency analysis provides benefits to a datasetwith limited amount of data has many advantages. Minimum data used in calculating the amount of design stromhas a very large error for higherreturn period. Therefore, the regional frequency analysis was used based on TL-moments method. There arethree types of probability distributions used in this study, namely the Generalized Extreme Value (GEV), Generalized Pareto (GPA) and the Generalized Logistic (GLO). Two of the three typesprobability distributions are the best choice by the TL-moment ratio diagrams which are Generalized Extreme Value, and Generalized Logistic. Ananother analysis wasconducted by the Z test and the Generalized Extreme Value (GEV) gives the best results. Therefore, the designs strom which was estimated based on the regional frequency analysis in Jakarta watersheds using the Generalized Extreme Value (GEV) has been determined.


2017 ◽  
Vol 9 (4) ◽  
pp. 2366-2371
Author(s):  
Dhruba Jyoti Bora ◽  
Munindra Borah

In this study it has been tried to develop a suitable model for maximum rainfall frequency analysis of the North East India using best fit probability distribution. The methods of L-moment have been employed for estimation of five probability distributions, namely Generalized extreme value (GEV), Generalized Logistic (GLO), Pearson type 3 (PE3), 3 parameter Log normal (LN3) and Generalized Pareto (GPA) distributions. The methods TL-moment have been used for estimating the parameters of three probability distributions namely Generalized extreme value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distributions. PE3 distribution has been selected as the best fit distribution using L-moment and GPA distribution using TL-moment method. Relative root mean square error (RRMSE) and Relative Bias (RBIAS) are employed to compare between the results found from L-moment and TL-moment analysis. It is found that PE3 distribution designated by L-moment method is the most suitable and the best fit distribution for rainfall frequency analysis of the North East India. Also the L-moment method is significantly more efficient than TL-moment.


2005 ◽  
Vol 10 (6) ◽  
pp. 437-449 ◽  
Author(s):  
Christopher M. Trefry ◽  
David W. Watkins ◽  
Dennis Johnson

1994 ◽  
Vol 21 (5) ◽  
pp. 856-862 ◽  
Author(s):  
Denis Gingras ◽  
Kaz Adamowski

A simulation study was undertaken to compare parametric L-moments and nonparametric approaches in flood frequency analysis. Data of various sample lengths were generated from a given generalized extreme value distribution and the quantiles estimated using the fixed-kernel nonparametric method and from a generalized extreme value distribution fitted by L-moments. From the resulting root-mean-square errors for various quantiles, it was concluded for unimodal distributions that nonparametric methods are preferable for large return period floods estimated from short (<30 years) samples while parametric methods are preferable in other circumstances. It was also pointed out that nonparametric methods are more suitable for mixed distributions. Key words: frequency analysis, L-moments, nonparametric methods, simulation.


Sign in / Sign up

Export Citation Format

Share Document