scholarly journals Human Walking Detection and Background Noise Classification by Deep Neural Networks for Doppler Radars

Author(s):  
Jihoon Kwon ◽  
Seoung-Jae Ha ◽  
Nojun Kwak
2020 ◽  
Vol 10 (17) ◽  
pp. 6077
Author(s):  
Gyuseok Park ◽  
Woohyeong Cho ◽  
Kyu-Sung Kim ◽  
Sangmin Lee

Hearing aids are small electronic devices designed to improve hearing for persons with impaired hearing, using sophisticated audio signal processing algorithms and technologies. In general, the speech enhancement algorithms in hearing aids remove the environmental noise and enhance speech while still giving consideration to hearing characteristics and the environmental surroundings. In this study, a speech enhancement algorithm was proposed to improve speech quality in a hearing aid environment by applying noise reduction algorithms with deep neural network learning based on noise classification. In order to evaluate the speech enhancement in an actual hearing aid environment, ten types of noise were self-recorded and classified using convolutional neural networks. In addition, noise reduction for speech enhancement in the hearing aid were applied by deep neural networks based on the noise classification. As a result, the speech quality based on the speech enhancements removed using the deep neural networks—and associated environmental noise classification—exhibited a significant improvement over that of the conventional hearing aid algorithm. The improved speech quality was also evaluated by objective measure through the perceptual evaluation of speech quality score, the short-time objective intelligibility score, the overall quality composite measure, and the log likelihood ratio score.


Author(s):  
Alex Hernández-García ◽  
Johannes Mehrer ◽  
Nikolaus Kriegeskorte ◽  
Peter König ◽  
Tim C. Kietzmann

2018 ◽  
Author(s):  
Chi Zhang ◽  
Xiaohan Duan ◽  
Ruyuan Zhang ◽  
Li Tong

2020 ◽  
Vol 68 (4) ◽  
pp. 283-293
Author(s):  
Oleksandr Pogorilyi ◽  
Mohammad Fard ◽  
John Davy ◽  
Mechanical and Automotive Engineering, School ◽  
Mechanical and Automotive Engineering, School ◽  
...  

In this article, an artificial neural network is proposed to classify short audio sequences of squeak and rattle (S&R) noises. The aim of the classification is to see how accurately the trained classifier can recognize different types of S&R sounds. Having a high accuracy model that can recognize audible S&R noises could help to build an automatic tool able to identify unpleasant vehicle interior sounds in a matter of seconds from a short audio recording of the sounds. In this article, the training method of the classifier is proposed, and the results show that the trained model can identify various classes of S&R noises: simple (binary clas- sification) and complex ones (multi class classification).


Sign in / Sign up

Export Citation Format

Share Document