scholarly journals Transmetric Density Estimation

2016 ◽  
Vol 5 (2) ◽  
pp. 35
Author(s):  
Sigve Hovda

<div>A transmetric is a generalization of a metric that is tailored to properties needed in kernel density estimation.  Using transmetrics in kernel density estimation is an intuitive way to make assumptions on the kernel of the distribution to improve convergence orders and to reduce the number of dimensions in the graphical display.  This framework is required for discussing the estimators that are suggested by Hovda (2014).</div><div> </div><div>Asymptotic arguments for the bias and the mean integrated squared error is difficult in the general case, but some results are given when the transmetric is of the type defined in Hovda (2014).  An important contribution of this paper is that the convergence order can be as high as $4/5$, regardless of the number of dimensions.</div>

2016 ◽  
Vol 5 (3) ◽  
pp. 63
Author(s):  
Sigve Hovda

Transmetric density estimation is a generalization of kernel density estimation that is proposed in Hovda(2014) and Hovda (2016), This framework involves the possibility of making assumptions on the kernel of the distribution to improve convergence orders and to reduce the number of dimensions in the graphical display.  In this paper we show that several state-of-the-art nonparametric, semiparametric and even parametric methods are special cases of this formulation, meaning that there is a unified approach. Moreover, it is shown that parameters can be trained using unbiased cross-validation.  When parameter estimation is included, the mean integrated squared error of the transmetric density estimator is lower than for the common kernel density estimator, when the number of dimensions is larger than two.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Christophe Chesneau

We consider the estimation of an unknown functionffor weakly dependent data (α-mixing) in a general setting. Our contribution is theoretical: we prove that a hard thresholding wavelet estimator attains a sharp rate of convergence under the mean integrated squared error (MISE) over Besov balls without imposing too restrictive assumptions on the model. Applications are given for two types of inverse problems: the deconvolution density estimation and the density estimation in a GARCH-type model, both improve existing results in this dependent context. Another application concerns the regression model with random design.


2021 ◽  
Vol 8 (4) ◽  
pp. 309-332
Author(s):  
Efosa Michael Ogbeide ◽  
Joseph Erunmwosa Osemwenkhae

Density estimation is an important aspect of statistics. Statistical inference often requires the knowledge of observed data density. A common method of density estimation is the kernel density estimation (KDE). It is a nonparametric estimation approach which requires a kernel function and a window size (smoothing parameter H). It aids density estimation and pattern recognition. So, this work focuses on the use of a modified intersection of confidence intervals (MICIH) approach in estimating density. The Nigerian crime rate data reported to the Police as reported by the National Bureau of Statistics was used to demonstrate this new approach. This approach in the multivariate kernel density estimation is based on the data. The main way to improve density estimation is to obtain a reduced mean squared error (MSE), the errors for this approach was evaluated. Some improvements were seen. The aim is to achieve adaptive kernel density estimation. This was achieved under a sufficiently smoothing technique. This adaptive approach was based on the bandwidths selection. The quality of the estimates obtained of the MICIH approach when applied, showed some improvements over the existing methods. The MICIH approach has reduced mean squared error and relative faster rate of convergence compared to some other approaches. The approach of MICIH has reduced points of discontinuities in the graphical densities the datasets. This will help to correct points of discontinuities and display adaptive density. Keywords: approach, bandwidth, estimate, error, kernel density


Author(s):  
SI-LI NIU ◽  
HAN-YING LIANG

In this paper, we construct a nonlinear wavelet estimator of conditional density function for a left truncation model. We provide an asymptotic expression for the mean integrated squared error (MISE) of the estimator. It is assumed that the lifetime observations form a stationary α-mixing sequence. Unlike for kernel estimator, the MISE expression of the nonlinear wavelet estimator is not affected by the presence of discontinuities in the curves.


2021 ◽  
Vol 7 (1) ◽  
pp. 28
Author(s):  
Rebeca Peláez Suárez ◽  
Ricardo Cao Abad ◽  
Juan M. Vilar Fernández

This work proposes a resampling technique to approximate the smoothing parameter of Beran’s estimator. It is based on resampling by the smoothed bootstrap and minimising the bootstrap approximation of the mean integrated squared error to find the bootstrap bandwidth. The behaviour of this method has been tested by simulation on several models. Bootstrap confidence intervals are also addressed in this research and their performance is analysed in the simulation study.


Sign in / Sign up

Export Citation Format

Share Document