scholarly journals Optimal Control Problem for the Weak Nonlinear Equation of Thin Plate With Control at the Coefficient of Lowest Term

2020 ◽  
Vol 12 (3) ◽  
pp. 31
Author(s):  
Khayala I. Seyfullaeva

The paper deals with an inverse problem of determining the right-hand side of the linear equation of oscillations of thin plates. The problem is reduced to the optimal control problem. Differentiability of the functional is studied. Necessary condition of optimality is derived.

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Youjun Xu ◽  
Shu Zhou

We establish the necessary condition of optimality for optimal control problem governed by some pseudoparabolic differential equations involving monotone graphs. Some approximating control process and examples are given.


2020 ◽  
Vol 13 (2) ◽  
pp. 314-322
Author(s):  
Gunay Ismayilova

In this paper, we consider the problem of determining the lowest coefficient of weakly nonlinear wave equation. The problem is reduced to the optimal control problem, in the new problem. In the this existence theorem of the optimal control and, the Fre ́echet differentiability of the functional is proved. Also the necessary condition of optimality is derived in view of variational inequality.


Filomat ◽  
2016 ◽  
Vol 30 (3) ◽  
pp. 711-720
Author(s):  
Charkaz Aghayeva

This paper concerns the stochastic optimal control problem of switching systems with delay. The evolution of the system is governed by the collection of stochastic delay differential equations with initial conditions that depend on its previous state. The restriction on the system is defined by the functional constraint that contains state and time parameters. First, maximum principle for stochastic control problem of delay switching system without constraint is established. Finally, using Ekeland?s variational principle, the necessary condition of optimality for control system with constraint is obtained.


2018 ◽  
Vol 25 (3) ◽  
pp. 371-379 ◽  
Author(s):  
Hamlet F. Guliyev ◽  
Khayala I. Seyfullaeva

AbstractAn optimal control problem for the vibration equation of an elastic plate is considered when the control function is included in the coefficient of the highest order derivative and the right-hand side of the equation. The solvability of the initial boundary value problem is shown, the theorem on the existence of an optimal control is proved and a necessary condition of optimality in the form of an integral equation is obtained.


2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


Games ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Alexander Arguchintsev ◽  
Vasilisa Poplevko

This paper deals with an optimal control problem for a linear system of first-order hyperbolic equations with a function on the right-hand side determined from controlled bilinear ordinary differential equations. These ordinary differential equations are linear with respect to state functions with controlled coefficients. Such problems arise in the simulation of some processes of chemical technology and population dynamics. Normally, general optimal control methods are used for these problems because of bilinear ordinary differential equations. In this paper, the problem is reduced to an optimal control problem for a system of ordinary differential equations. The reduction is based on non-classic exact increment formulas for the cost-functional. This treatment allows to use a number of efficient optimal control methods for the problem. An example illustrates the approach.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 311
Author(s):  
Dongsheng Luo ◽  
Wei Wei ◽  
Hongyong Deng ◽  
Yumei Liao

In this paper, we consider the time-optimal control problem about a kind of Petrowsky system and its bang-bang property. To solve this problem, we first construct another control problem, whose null controllability is equivalent to the controllability of the time-optimal control problem of the Petrowsky system, and give the necessary condition for the null controllability. Then we show the existence of time-optimal control of the Petrowsky system through minimum sequences, for the null controllability of the constructed control problem is equivalent to the controllability of the time-optimal control of the Petrowsky system. At last, with the null controllability, we obtain the bang-bang property of the time-optimal control of the Petrowsky system by contradiction, moreover, we know the time-optimal control acts on one subset of the boundary of the vibration system.


Author(s):  
K. L. Teo ◽  
K. H. Wong ◽  
Z. S. Wu

A class of convex optimal control problems involving linear hereditary systems with linear control constraints and nonlinear terminal constraints is considered. A result on the existence of an optimal control is proved and a necessary condition for optimality is given. An iterative algorithm is presented for solving the optimal control problem under consideration. The convergence property of the algorithm is also investigated. To test the algorithm, an example is solved.


Sign in / Sign up

Export Citation Format

Share Document