scholarly journals Key Role of Dimensional Analysis Homogeneity in Proving Riemann Hypothesis and Providing Explanations on the Closely Related Gram Points

2016 ◽  
Vol 8 (4) ◽  
pp. 1
Author(s):  
John Y. C. Ting

Riemann zeta function is the famous complex number infinite series consisting of a real and an imaginary part. Non-trivial zeros and Gram points are best seen as mathematically derived entities of this function when its variable Sigma has a value of $\frac{1}{2}$. The presence [but not the actual locations] of the complete set of infinite non-trivial zeros is characterized by the criterion that the sum total of the simultaneous real and imaginary parts in Riemann zeta function equates to zero. In an identical manner this slightly altered criterion for the presence [but not the actual locations] of the complete set of infinite Gram points is that this 'sum total' now refer to the lesser requirement that only the individual imaginary part in Riemann zeta function equates to zero. The key role played by Dimensional analysis homogeneity to rigorously prove Riemann conjecture/hypothesis has been fully outlined in our landmark research paper published earlier on Page 9 - 21 in the preceding Volume 8, Number 3, June 2016 issue of this journal. Those resulting methodology previously employed by us are now mathematically used in an analogical procedure to delineate its role in successfully supplying crucial explanations for Gram points. In this research article, we use the notation \{Non-critical lines\}-Gram points to signify those 'near-identical' (virtual) Gram points when Sigma value is not $\frac{1}{2}$.

Author(s):  
RICHARD P. BRENT ◽  
DAVID J. PLATT ◽  
TIMOTHY S. TRUDGIAN

Abstract We consider the sum $\sum 1/\gamma $ , where $\gamma $ ranges over the ordinates of nontrivial zeros of the Riemann zeta-function in an interval $(0,T]$ , and examine its behaviour as $T \to \infty $ . We show that, after subtracting a smooth approximation $({1}/{4\pi }) \log ^2(T/2\pi ),$ the sum tends to a limit $H \approx -0.0171594$ , which can be expressed as an integral. We calculate H to high accuracy, using a method which has error $O((\log T)/T^2)$ . Our results improve on earlier results by Hassani [‘Explicit approximation of the sums over the imaginary part of the non-trivial zeros of the Riemann zeta function’, Appl. Math. E-Notes16 (2016), 109–116] and other authors.


Author(s):  
J. E. Littlewood

Let N (T) denote, as usual, the number of zeros of ζ (s) whose imaginary part γ satisfies 0 < γ < T, and N (σ, T) the number of these for which, in addition, the real part is greater than σ. In this definition we suppose, in the first place, that no zero actually lies on the line t = T: if the line contains zeros we define


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
WonTae Hwang ◽  
Kyunghwan Song

Abstract We prove that the integer part of the reciprocal of the tail of $\zeta (s)$ ζ ( s ) at a rational number $s=\frac{1}{p}$ s = 1 p for any integer with $p \geq 5$ p ≥ 5 or $s=\frac{2}{p}$ s = 2 p for any odd integer with $p \geq 5$ p ≥ 5 can be described essentially as the integer part of an explicit quantity corresponding to it. To deal with the case when $s=\frac{2}{p}$ s = 2 p , we use a result on the finiteness of integral points of certain curves over $\mathbb{Q}$ Q .


1994 ◽  
Vol 37 (2) ◽  
pp. 278-286 ◽  
Author(s):  
C. Yalçin Yildirim

AbstractA relation between the zeros of the partial sums and the zeros of the corresponding tails of the Maclaurin series for ez is established. This allows an asymptotic estimation of a quantity which came up in the theory of the Riemann zeta-function. Some new properties of the tails of ez are also provided.


Sign in / Sign up

Export Citation Format

Share Document