scholarly journals On the degree of approximation of functions belonging to the weighted $ (L^p, \xi (t)) $ class by Hausdorff means

2001 ◽  
Vol 32 (4) ◽  
pp. 305-314
Author(s):  
B. E. Rhoades

In this paper we obtain a theorem on the degree of approximation of functions belonging to a certain weighted class, using any Hausdorff method with mass function possessing a derivative. This result is a substantial generalization of the theorem of Lal [2].

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abhishek Mishra ◽  
Vishnu Narayan Mishra ◽  
M. Mursaleen

AbstractIn this paper, we establish a new estimate for the degree of approximation of functions $f(x,y)$ f ( x , y ) belonging to the generalized Lipschitz class $Lip ((\xi _{1}, \xi _{2} );r )$ L i p ( ( ξ 1 , ξ 2 ) ; r ) , $r \geq 1$ r ≥ 1 , by double Hausdorff matrix summability means of double Fourier series. We also deduce the degree of approximation of functions from $Lip ((\alpha ,\beta );r )$ L i p ( ( α , β ) ; r ) and $Lip(\alpha ,\beta )$ L i p ( α , β ) in the form of corollary. We establish some auxiliary results on trigonometric approximation for almost Euler means and $(C, \gamma , \delta )$ ( C , γ , δ ) means.


Author(s):  
T. O. Petrova ◽  
I. P. Chulakov

We discuss whether on not it is possible to have interpolatory estimates in the approximation of a function $f є W^r [0,1]$ by polynomials. The problem of positive approximation is to estimate the pointwise degree of approximation of a function $f є C^r [0,1] \cap \Delta^0$ where $\Delta^0$ is the set of positive functions on [0,1]. Estimates of the form (1) for positive approximation are known ([1],[2]). The problem of monotone approximation is that of estimating the degree of approximation of a monotone nondecreasing function by monotone nondecreasing polynomials. Estimates of the form (1) for monotone approximation were proved in [3],[4],[8]. In [3],[4] is consider $r є , r > 2$. In [8] is consider $r є , r > 2$. It was proved that for monotone approximation estimates of the form (1) are fails for $r є , r > 2$. The problem of convex approximation is that of estimating the degree of approximation of a convex function by convex polynomials. The problem of convex approximation is that of estimating the degree of approximation of a convex function by convex polynomials. The problem of convex approximation is consider in ([5],[6]). In [5] is consider $r є , r > 2$. In [6] is consider $r є , r > 2$. It was proved that for convex approximation estimates of the form (1) are fails for $r є , r > 2$. In this paper the question of approximation of function $f є W^r \cap \Delta^1, r є (3,4)$ by algebraic polynomial $p_n є \Pi_n \cap \Delta^1$ is consider. The main result of the work generalize the result of work [8] for $r є (3,4)$.


2019 ◽  
Vol 52 (1) ◽  
pp. 370-387
Author(s):  
Hare Krishna Nigam

AbstractHere, we estimate the degree of approximation of a conjugate function {\tilde g} and a derived conjugate function {\tilde g'} , of a 2π-periodic function g \in Z_r^\lambda , r ≥ 1, using Hausdorff means of CFS (conjugate Fourier series) and CDFS (conjugate derived Fourier series) respectively. Our main theorems generalize four previously known results. Some important corollaries are also deduced from our main theorems. We also partially review the earlier work of the authors in respect of order of the Euler-Hausdorff product method.


1972 ◽  
Vol 6 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Badri N. Sahney ◽  
V. Venu Gopal Rao

Let f(x) ε Lipα, 0 < α < 1, in the range (-π, π), and periodic with period 2π, outside this range. Also let.We define the norm asand let the degree of approximation be given bywhere Tn (x) is some n–th trigonometric polynomial.


1972 ◽  
Vol 13 (3) ◽  
pp. 271-276 ◽  
Author(s):  
G. C. Jain

Various extensions and generalizations of Bernstein polynomials have been considered among others by Szasz [13], Meyer-Konig and Zeller [8], Cheney and Sharma [1], Jakimovski and Leviatan [4], Stancu [12], Pethe and Jain [11]. Bernstein polynomials are based on binomial and negative binomial distributions. Szasz and Mirakyan [9] have defined another operator with the help of the Poisson distribution. The operator has approximation properties similar to those of Bernstein operators. Meir and Sharma [7] and Jam and Pethe [3] deal with generalizations of Szasz-Mirakyan operator. As another generalization, we define in this paper a new operator with the help of a Poisson type distribution, consider its convergence properties and give its degree of approximation. The results for the Szasz-Mirakyan operator can easily be obtained from our operator as a particular case.


Sign in / Sign up

Export Citation Format

Share Document