scholarly journals Decline of planted lodgepole pine in the southern interior of British Columbia

2010 ◽  
Vol 86 (4) ◽  
pp. 484-497 ◽  
Author(s):  
W. Jean Mather ◽  
Suzanne W. Simard ◽  
Jean L. Heineman ◽  
Donald L. Sachs

Lodgepole pine is extensively planted across western Canada but little is known about development of these stands beyond the juvenile stage. We quantified stocking status and damage incidence in sixty-six 15- to 30-year-old lodgepole pine plantations that had previously been declared free-growing in the southern interior of British Columbia. The stands were located in six biogeoclimatic zones: Engelmann Spruce-Subalpine Fir (ESSF), Montane Spruce (MS), Interior Cedar-Hemlock (ICH), Interior Douglas-fir (IDF), Sub-Boreal Spruce (SBS), and Sub-Boreal Pine-Spruce (SBPS). Free-growing standards were no longer met on 27% of plantations, with the worst performance (70% no longer free-growing) in the Interior Cedar-Hemlock forests. Natural regeneration was common but it was half the size of lodgepole pine. Biotic damage, especially hard pine stem rusts, was the dominant factor reducing free-growing densities. Stands were at greater risk of reduced stocking where summer precipitation was higher or soil moisture regimes were wetter and where stands had been broadcast-burned prior to planting or received secondary treatments of brushing or pruning. Reforestation policies that encourage widespread planting of lodgepole pine, particularly in areas where lodgepole pine has limited natural occurrence such as in the ICH zone, should be reconsidered given that health problems are extensive and are expected to increase with climate change.Key words: Pinus contorta, lodgepole pine, free-growing, stocking, forest health, damage, disease

2000 ◽  
Vol 15 (2) ◽  
pp. 62-69 ◽  
Author(s):  
Han Y. H. Chen ◽  
Karel Klinka

Abstract To estimate potential productivity of the high-elevation Engelmann Spruce and Subalpine Fir (ESSF) zone of British Columbia forests, the height growth models developed from low-elevation forests are currently used to estimate site indices of subalpine fir (Abies lasiocarpa), Engelmann spruce (Picea engelmannii), and lodgepole pine (Pinus contorta). Whether these models are adequate to describe height growth of high-elevation forests is of concern. We sampled a total of 319 naturally established, even-aged, and undamaged stands with breast height age ≥50 yr (165 for subalpine fir, 87 for Engelmann spruce, and 67 for lodgepole pine) ranging widely in climate and available soil moisture and nutrients. In each sampled stand, three dominant trees were destructively sampled for stem analysis. Height growth models developed from fitting data to a conditioned logistic function explained > 97% variation in height for all three study species. Examined by residual analysis, no models showed lack of fit. These models provided more accurate estimates of site index than the currently used models developed from low-elevation stands or different species. It is recommended that the models developed in this study be applied to estimate site index of the three species in the ESSF zone in British Columbia. West. J. Appl. For. 15(2):62-69.


2001 ◽  
Vol 31 (12) ◽  
pp. 2183-2199 ◽  
Author(s):  
Markus L Heinrichs ◽  
Richard J Hebda ◽  
Ian R Walker

The vegetation and natural disturbance history of the Mount Kobau area, in the Engelmann spruce (Picea engelmannii Parry ex Engelm.) – subalpine fir (Abies lasiocarpa (Hook.) Nutt.) (ESSF) forest of southern British Columbia, was reconstructed using pollen, plant macrofossils, and microscopic charcoal. Late-glacial vegetation, occurring from about 11 000 14C years BP, consisted of an Artemisia steppe under a cold and dry climate. Rapid warming occurred at the start of the Holocene, approximately 10 000 to 9500 years BP, and grassland steppe vegetation prevailed. Moisture increased during the mid-Holocene, from approximately 7000 to 3800 years BP, and fires may have occurred more widely and burned more severely. Open lodgepole pine (Pinus contorta Dougl. ex Loud.) parkland occupied the mountain summit. Late-Holocene cooling at 4000 years BP resulted in the establishment of modern ESSF forest. The vegetation and inferred climate history confirm a broad three-stage (warm dry – moderate moist – cool moist) regional climatic pattern of the Holocene. Under future anticipated climate change, the high-elevation, dry ESSF forests in southern British Columbia may be replaced by grasslands.


2016 ◽  
Vol 46 (4) ◽  
pp. 595-599 ◽  
Author(s):  
Anya M. Reid ◽  
William K. Chapman ◽  
Cindy E. Prescott

Recently, the assumption that stands with fast growth will have minor losses to insect and disease attack has been challenged. Although tree growth and health are both critical for long-term forest productivity, standardized forest-health data are rarely collected in conjunction with tree-growth data. Using six Long-Term Soil Productivity (LTSP) installations in British Columbia, Canada, we explore the relationships between lodgepole pine (Pinus contorta Douglas ex Loudon) growth and disease occurrence. Treatment plots and random groups of 100 trees that had larger trees generally had more disease. These findings suggest that we can no longer assume that fast-growing plantations will be free of disease, which has implications for predicting future timber supply.


2015 ◽  
Vol 105 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Kennedy Boateng ◽  
Kathy J. Lewis

We studied spore dispersal by Dothistroma septosporum, causal agent of a serious outbreak of red band needle blight in lodgepole pine plantations in northwest British Columbia. Spore abundance was assessed at different distances and heights from inoculum sources and microclimatic factors were recorded during two consecutive years. Conidia were observed on spore traps from June to September during periods of rainfall. It was rare to detect spores more than 2 m away from inoculum sources. The timing and number of conidia dispersed were strongly tied to the climatic variables, particularly rainfall and leaf wetness. Should the trend toward increased spring and summer precipitation in the study area continue, the results suggest that disease spread and intensification will also increase. Increasing the planting distances between lodgepole pine trees through mixed species plantations and overall reduction in use of lodgepole pine for regeneration in wet areas are the best strategies to reduce the spread of the disease and enhance future productivity of plantations in the study area.


Botany ◽  
2019 ◽  
Vol 97 (1) ◽  
pp. 23-33
Author(s):  
Paul Y. de la Bastide ◽  
Jonathon LeBlanc ◽  
Lisheng Kong ◽  
Terrie Finston ◽  
Emily M. May ◽  
...  

Lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Watson) is an important lumber species in Canada, and seed orchards are expected to meet the increased demand for seed. However, seed production has been consistently low in the Okanagan region orchards of British Columbia, Canada. To determine whether the fungal microbiome contributes to seed loss, histological and molecular approaches were used. Seed production was studied at seven Okanagan orchards, all outside the natural range of lodgepole pine, and at one near Prince George, within its natural range. Seed losses were highest in the Okanagan, compared with Prince George. The role of fungal colonizers in consuming seed during the last stages of maturation is described. Fungal hyphae were frequently observed at all locations in developing seed, particularly once storage substances accumulated. Fungi identified from host tissues using molecular and morphological techniques included Alternaria, Cladosporium, Fusarium, Penicillium, and Sydowia. The opportunistic foliar pathogen Sydowia polyspora, which is known to have a variable biotrophic status, was detected at most orchards within different host tissues (seeds, needles, and conelets), in association with pollen, and in the air column. Reduced seed viability observed in Okanagan orchards is most likely due to a combination of factors, including composition of the fungal microbiome.


1997 ◽  
Vol 12 (1) ◽  
pp. 5-8
Author(s):  
Gordon D. Nigh

Abstract The objective of this study was to determine whether the relationship between site index and early height growth of lodgepole pine (Pinus contorta var. latifolia) is the same on wet and dry sites. If the height growth/site index relationship is the same for different site types, then only one growth intercept model is required to estimate site index. Indicator variables in nonlinear regression were used to incorporate soil moisture availability into a growth intercept model. One set of parameters in a site index/early height growth model was adequate for both wet and dry sites. This result was supported graphically. Therefore, only one growth intercept model is necessary for the sites examined in this study. West. J. Appl. For. 12(1):5-8.


2003 ◽  
Vol 79 (5) ◽  
pp. 892-897 ◽  
Author(s):  
Alex J Woods

Forest management in the Interior Cedar Hemlock (ICH) zone of the Kispiox TSA in northwest British Columbia has focused on two tree species. Interior spruce (Picea engelmanni Parry ex Engelm. × Picea glauca (Moench) Voss) and lodgepole pine (Pinus contorta var. latifolia Dougl. ex Loud.) have dominated plantations, while historically, western hemlock (Tsuga heterophylla (Raf.) Sarg.), true firs (Abies lasiocarpa (Hook.) Nutt. and (Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes) and western redcedar (Thuja plicata Donn ex D. Don), have dominated the landscape. Tomentosus root disease (Inonotus tomentosus (Fr.) Teng) and Dothistroma needle blight (Mycosphaerella pini Rostr. in Munk) are the principal diseases affecting interior spruce and lodgepole pine plantations, respectively. Tomentosus root disease was found in 92% of spruce-dominated stands 100 years and older in the study area. The annual recruitment of dead interior spruce and lodgepole pine tree volume due to the disease in those stands is 4.29 m3/ha or 51 990 m3. The incidence of Tomentosus root disease in ten randomly selected spruce leading plantations aged 25–30 years ranged from 0.6% to 10.4% and averaged 5.9% of the host trees. Dothistroma needle blight was the most prevalent pest in a survey of 100 randomly selected lodgepole pine plantations and has caused considerable crop tree mortality. The disease has even caused mortality in 55-year-old lodgepole pine trees. Maintaining species diversity is essential to long-term forest health. Intensive planting of interior spruce and lodge-pole pine in this study area appears to have exacerbated disease problems. Key words: forest health, species diversity, interior spruce, lodgepole pine, Tomentosus root disease, Dothistroma needle blight


Sign in / Sign up

Export Citation Format

Share Document