host tissues
Recently Published Documents


TOTAL DOCUMENTS

635
(FIVE YEARS 159)

H-INDEX

58
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Melen Leclerc ◽  
Stéphane Jumel ◽  
Frédéric M. Hamelin ◽  
Rémi Treilhaud ◽  
Nicolas Parisey ◽  
...  

Within-host spread of pathogens is an important process for the study of plant-pathogen interactions. However, the development of plant-pathogen lesions remains practically difficult to characterize and quantify beyond the common traits such as lesion area. We tackle the spatio-temporal dynamics of interactions by combining image-based phenotyping with mathematical modelling. We consider the spread of Peyronellaea pinodes on pea stipules that were monitored daily with visible imaging. We assume that pathogen propagation on host-tissues can be described by the Fisher-KPP model where lesion spread depends on both a logistic local growth and an homogeneous diffusion. Model parameters are estimated using a variational data assimilation approach on sets of registered images. This modelling framework is used to compare the spread of an aggressive isolate on two pea cultivars with contrasted levels of partial resistance. We show that the expected slower spread on the most resistant cultivar is actually due to a decrease of diffusion and, to a lesser extent, local growth. These results demonstrate that spatial models with imaging allows one to disentangle the processes involved in host-pathogen interactions. Hence, promoting model-based phenotyping of interactions would allow a better identification of quantitative traits thereafter used in genetics and ecological studies.


Author(s):  
Mohammad Samiei ◽  
Mahdieh Alipour ◽  
Khadijeh Khezri ◽  
Yalda Rahbar Saadat ◽  
Haleh Forouhandeh ◽  
...  

: Collagen is an important macromolecule of extracellular matrix (ECM) in bones, teeth, and temporomandibular joints. Mesenchymal stem cells (MSCs) interact with the components of the ECM such as collagen, proteoglycans, glycosaminoglycans (GAGs), and several proteins on behalf of variable matrix elasticity and bioactive cues. Synthetic collagen-based biomaterials could be effective scaffolds for regenerative dentistry applications due to mimicking of host tissues’ ECM. These biomaterials are biocompatible, biodegradable, readily available, and non-toxic to cells whose capability promotes cellular response and wound healing in the craniofacial region. Collagen could incorporate other biomolecules to induce mineralization in calcified tissues such as bone and tooth. Moreover, the addition of these molecules or other polymers to collagen-based biomaterials could enhance mechanical properties, which is important in load-bearing areas such as the mandible. A literature review was performed via reliable internet database (mainly PubMed) based on MeSH keywords. This review first describes the properties of collagen as a key protein in the structure of hard tissues. Then, it introduces different types of collagens, the correlation between collagen and MSCs, and the methods used to modify collagen in regenerative dentistry including recent progression on the regeneration of periodontium, dentin-pulp complex, and temporomandibular joint by applying collagen. Besides, the prospects and challenges of collagen-based biomaterials in the craniofacial region pointes out.


2021 ◽  
Vol 12 ◽  
Author(s):  
Beena Alam ◽  
Jùnwén Lǐ ◽  
Qún Gě ◽  
Mueen Alam Khan ◽  
Jǔwǔ Gōng ◽  
...  

Endophytic fungi (EF) are a group of fascinating host-associated fungal communities that colonize the intercellular or intracellular spaces of host tissues, providing beneficial effects to their hosts while gaining advantages. In recent decades, accumulated research on endophytic fungi has revealed their biodiversity, wide-ranging ecological distribution, and multidimensional interactions with host plants and other microbiomes in the symbiotic continuum. In this review, we highlight the role of secondary metabolites (SMs) as effectors in these multidimensional interactions, and the biosynthesis of SMs in symbiosis via complex gene expression regulation mechanisms in the symbiotic continuum and via the mimicry or alteration of phytochemical production in host plants. Alternative biological applications of SMs in modern medicine, agriculture, and industry and their major classes are also discussed. This review recapitulates an introduction to the research background, progress, and prospects of endophytic biology, and discusses problems and substantive challenges that need further study.


2021 ◽  
Vol 118 (51) ◽  
pp. e2113951118
Author(s):  
Jiagui Li ◽  
Beatrice Claudi ◽  
Joseph Fanous ◽  
Natalia Chicherova ◽  
Francesca Romana Cianfanelli ◽  
...  

Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving Salmonella in mouse spleen using high-resolution whole-organ tomography. Chemotherapy cleared >99.5% of the Salmonella but was inefficient against a small Salmonella subset in the white pulp. Previous models could not explain these findings: drug exposure was adequate, Salmonella continued to replicate, and host stresses induced only limited Salmonella drug tolerance. Instead, antimicrobial clearance required support of Salmonella-killing neutrophils and monocytes, and the density of such cells was lower in the white pulp than in other spleen compartments containing higher Salmonella loads. Neutrophil densities declined further during treatment in response to receding Salmonella loads, resulting in insufficient support for Salmonella clearance from the white pulp and eradication failure. However, adjunctive therapies sustaining inflammatory support enabled effective clearance. These results identify uneven Salmonella tissue colonization and spatiotemporal inflammation dynamics as main causes of Salmonella persistence and establish a powerful approach to investigate scarce but impactful pathogen subsets in complex host environments.


Hematology ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 281-286
Author(s):  
Shannon A. Carty

Abstract From an evolutionary perspective, the immune system developed primarily to protect the host from pathogens. In the continuous balance between killing pathogens and protecting host tissues, selective pressures have shaped the discriminatory functions of the immune system. In addition to protection against microbial pathogens, the immune system also plays a critical role in antitumor immunity. Immune dysfunction, either under- or overactivity, is found in a wide range of hematologic disorders. Here we review the fundamental features of the immune system and the key concepts critical to understanding the impact of immune dysfunction on hematologic disorders.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Erik Bakkeren ◽  
Joana Anuschka Herter ◽  
Jana Sanne Huisman ◽  
Yves Steiger ◽  
Ersin Gül ◽  
...  

Many plasmids encode antibiotic resistance genes. Through conjugation, plasmids can be rapidly disseminated. Previous work identified gut luminal donor/recipient blooms and tissue-lodged plasmid-bearing persister cells of the enteric pathogen Salmonella enterica serovar Typhimurium (S.Tm) that survive antibiotic therapy in host tissues, as factors promoting plasmid dissemination among Enterobacteriaceae. However, the buildup of tissue reservoirs and their contribution to plasmid spread await experimental demonstration. Here, we asked if re-seeding-plasmid acquisition-invasion cycles by S.Tm could serve to diversify tissue-lodged plasmid reservoirs, and thereby promote plasmid spread. Starting with intraperitoneal mouse infections, we demonstrate that S.Tm cells re-seeding the gut lumen initiate clonal expansion. Extended spectrum beta-lactamase (ESBL) plasmid-encoded gut luminal antibiotic degradation by donors can foster recipient survival under beta-lactam antibiotic treatment, enhancing transconjugant formation upon re-seeding. S.Tm transconjugants can subsequently re-enter host tissues introducing the new plasmid into the tissue-lodged reservoir. Population dynamics analyses pinpoint recipient migration into the gut lumen as rate-limiting for plasmid transfer dynamics in our model. Priority effects may be a limiting factor for reservoir formation in host tissues. Overall, our proof-of-principle data indicates that luminal antibiotic degradation and shuttling between the gut lumen and tissue-resident reservoirs can promote the accumulation and spread of plasmids within a host over time.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Wendelin Schnippenkoetter ◽  
Mohammad Hoque ◽  
Rebecca Maher ◽  
Angela Van de Wouw ◽  
Phillip Hands ◽  
...  

Abstract Background Blackleg disease, caused by the fungal pathogen Leptosphaeria maculans, is a serious threat to canola (Brassica napus) production worldwide. Quantitative resistance to this disease is a highly desirable trait but is difficult to precisely phenotype. Visual scores can be subjective and are prone to assessor bias. Methods to assess variation in quantitative resistance more accurately were developed based on quantifying in planta fungal biomass, including the Wheat Germ Agglutinin Chitin Assay (WAC), qPCR and ddPCR assays. Results Disease assays were conducted by inoculating a range of canola cultivars with L. maculans isolates in glasshouse experiments and assessing fungal biomass in cotyledons, petioles and stem tissue harvested at different timepoints post-inoculation. PCR and WAC assay results were well correlated, repeatable across experiments and host tissues, and able to differentiate fungal biomass in different host-isolate treatments. In addition, the ddPCR assay was shown to differentiate between L. maculans isolates. Conclusions The ddPCR assay is more sensitive in detecting pathogens and more adaptable to high-throughput methods by using robotic systems than the WAC assay. Overall, these methods proved accurate and non-subjective, providing alternatives to visual assessments to quantify the L. maculans-B. napus interaction in all plant tissues throughout the progression of the disease in seedlings and mature plants and have potential for fine-scale blackleg resistance phenotyping in canola.


2021 ◽  
Vol 12 ◽  
Author(s):  
Arun Sharma ◽  
Kalpana Sagar ◽  
Neeraj Kumar Chauhan ◽  
Balaji Venkataraman ◽  
Nidhi Gupta ◽  
...  

The extraordinary expansion of Toxin Antitoxin (TA) modules in the genome of Mycobacterium tuberculosis has received significant attention over the last few decades. The cumulative evidence suggests that TA systems are activated in response to stress conditions and are essential for M. tuberculosis pathogenesis. In M. tuberculosis, Rv1955-Rv1956-Rv1957 constitutes the only tripartite TAC (Toxin Antitoxin Chaperone) module. In this locus, Rv1955 (HigB1) encodes for the toxin and Rv1956 (HigA1) encodes for antitoxin. Rv1957 encodes for a SecB-like chaperone that regulates HigBA1 toxin antitoxin system by preventing HigA1 degradation. Here, we have investigated the physiological role of HigB1 toxin in stress adaptation and pathogenesis of Mycobacterium tuberculosis. qPCR studies revealed that higBA1 is upregulated in nutrient limiting conditions and upon exposure to levofloxacin. We also show that the promoter activity of higBA1 locus in M. tuberculosis is (p)ppGpp dependent. We observed that HigB1 locus is non-essential for M. tuberculosis growth under different stress conditions in vitro. However, guinea pigs infected with higB1 deletion strain exhibited significantly reduced bacterial loads and pathological damage in comparison to the animals infected with the parental strain. Transcriptome analysis suggested that deletion of higB1 reduced the expression of genes involved in virulence, detoxification and adaptation. The present study describes the role of higB1 toxin in M. tuberculosis physiology and highlights the importance of higBA1 locus during infection in host tissues.


2021 ◽  
Vol 7 (12) ◽  
pp. 1029
Author(s):  
Emilie Faway ◽  
Cindy Staerck ◽  
Célya Danzelle ◽  
Sophie Vroomen ◽  
Christel Courtain ◽  
...  

Dermatophytoses are superficial infections of human and animal keratinized tissues caused by filamentous fungi named dermatophytes. Because of a high and increasing incidence, as well as the emergence of antifungal resistance, a better understanding of mechanisms involved in adhesion and invasion by dermatophytes is required for the further development of new therapeutic strategies. In the last years, several in vitro and in vivo models have emerged to study dermatophytosis pathogenesis. However, the procedures used for the growth of fungi are quite different, leading to a highly variable composition of inoculum for these models (microconidia, arthroconidia, hyphae), thus rendering difficult the global interpretation of observations. We hereby optimized growth conditions, including medium, temperature, atmosphere, and duration of culture, to improve the sporulation and viability and to favour the production of arthroconidia of several dermatophyte species, including Trichophyton rubrum and Trichophyton benhamiae. The resulting suspensions were then used as inoculum to infect reconstructed human epidermis in order to validate their ability to adhere to and to invade host tissues. By this way, this paper provides recommendations for dermatophytes culture and paves the way towards a standardized procedure for the production of infective spores usable in in vitro and in vivo experimental models.


Author(s):  
Akila Shree J ◽  
Krishnaveni C

Endophytic fungi from Orchids believed to have an essential symbiotic relationship with the plant for both the germination of seeds and the development of young plantlets. Endophytes are microorganisms which live in the intercellular spaces of healthy host tissues without causing apparent symptoms. Endophytic fungi isolated from the medicinal plants are used for the development of drugs as they act as the source of bioactive compounds. This study has been designed to isolate the fungal endophytes from the leaves of three epiphytic orchid species (Coelogyne nervosa, A. Rich., Coelogyne mossiae, Rolf and Coelogyne cristata, Lindl) from the same genus Coelogyne, collected from Ooty flora, Coonoor. About five different endophytes were identified and their morphological characters were studied. Coelogyne cristata showed maximum colonization frequency. Among the five species, Fusarium species showed antibacterial activity against the gram-positive bacteria Bacillus Subtilis, a pathogen found in soil, water and food. Fungal genomic DNA isolated for molecular identification from the four fungal species.


Sign in / Sign up

Export Citation Format

Share Document