dothistroma needle blight
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lukas Hunziker ◽  
Mariana Tarallo ◽  
Keiko Gough ◽  
Melissa Guo ◽  
Cathy Hargreaves ◽  
...  

AbstractForests are under threat from pests, pathogens, and changing climate. A major forest pathogen worldwide is the hemibiotroph Dothistroma septosporum, which causes dothistroma needle blight (DNB) of pines. While D. septosporum uses effector proteins to facilitate host infection, it is currently unclear whether any of these effectors are recognised by immune receptors to activate the host immune system. Such information is needed to identify and select disease resistance against D. septosporum in pines. We predicted and investigated apoplastic D. septosporum candidate effectors (DsCEs) using bioinformatics and plant-based experiments. We discovered DsCEs that trigger cell death in the angiosperm Nicotiana spp., indicative of a hypersensitive defence response and suggesting their recognition by immune receptors in non-host plants. In a first for foliar forest pathogens, we developed a novel protein infiltration method to show that tissue-cultured pine shoots can respond with a cell death response to a DsCE, as well as to a reference cell death-inducing protein. The conservation of responses across plant taxa suggests that knowledge of pathogen–angiosperm interactions may also be relevant to pathogen–gymnosperm interactions. These results contribute to our understanding of forest pathogens and may ultimately provide clues to disease immunity in both commercial and natural forests.


2021 ◽  
Author(s):  
Lukas Hunziker ◽  
Mariana Tarallo ◽  
Keiko Gough ◽  
Melissa Guo ◽  
Cathy Hargreaves ◽  
...  

Forests are under threat from pests, pathogens, and changing climate. One of the major forest pathogens worldwide is Dothistroma septosporum, which causes dothistroma needle blight (DNB) of pines. D. septosporum is a hemibiotrophic fungus related to well-studied Dothideomycete pathogens, such as Cladosporium fulvum. These pathogens use small secreted proteins, termed effectors, to facilitate the infection of their hosts. The same effectors, however, can be recognised by plants carrying corresponding immune receptors, resulting in resistance responses. Hence, effectors are increasingly being exploited to identify and select disease resistance in crop species. In gymnosperms, however, such research is scarce. We predicted and investigated apoplastic D. septosporum candidate effectors (DsCEs) using bioinformatics and plant-based experiments. We discovered secreted proteins that trigger cell death in the angiosperm Nicotiana spp., suggesting their recognition by immune receptors in non-host plants. In a first for foliar forest pathogens, we also developed a novel protein infiltration method to show that tissue-cultured pine shoots can respond with a cell death response to one of our DsCEs, as well as to a reference cell death-inducing protein. These results contribute to our understanding of forest pathogens and may ultimately provide clues to disease immunity in both commercial and natural forests.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 983
Author(s):  
Chiara Aglietti ◽  
Alessandra Benigno ◽  
Edoardo Scali ◽  
Paolo Capretti ◽  
Luisa Ghelardini ◽  
...  

In this work, we rechecked, using species-specific Loop mediated isothermal AMPlification (LAMP) diagnostic assays followed by sequencing of fungal isolates at the beta-2-tubulin (tub2) gene region, a historical and never confirmed report of Dothistroma needle blight (DNB) in the introduced Monterey pine (Pinus radiata D. Don) in the mountains in the extreme tip of southern Italy. The report dates back to the mid-1970s, and predates the molecular-based taxonomic revision of the genus Dothistroma that defined the species accepted today. In the fall of 2019, symptomatic needles of Monterey pine and Corsican pine (Pinus nigra subsp. laricio (Poir.) Palib. ex Maire) were sampled in the area of the first finding. The applied diagnostic methods revealed the presence of Dothistroma septosporum (Dorogin) M. Morelet on both pine species. In this way, we: (i) confirmed the presence of the disease; (ii) clarified the taxonomic identity of the causal agent now occurring at that site; (iii) validated the species-specific LAMP diagnostic protocol we recently developed for Dothistroma for use on a portable field instrument, and (iv) showed that the pathogen now also attacks the native P. nigra subsp. laricio, a species particularly susceptible to the disease, indigenous to the mountains of Calabria, which is one of the very few areas where the species’ genetic resources are conserved. Comparative genetic analysis of the rare populations of D. septosporum found in the central Mediterranean region and in the native range of P. nigra subsp. laricio could help to clarify the history of the spread of the pathogen in southern Europe and better evaluate the risk it poses to the conservation of native pine species.


Author(s):  
L. A. Golovchenko ◽  
N. G. Dishuk ◽  
S. V. Panteleev ◽  
O. Yu. Baranov

Red band needle blight, or Dothistroma needle blight is one of the most common and harmful diseases of pine. The causative agents of the disease are pathogenic micromycetes Dothistroma septosporum (Dorogin) M. Morelet and Dothistroma pini Hulbary. Dothistroma needle blight was firstly detected in Belarus in 2012 year, but till now information about this disease in the republic is fragmentary. The article presents the results of a survey of different pine trees, carried out in the period 2016–2020 years in botanical and dendrological gardens, forest nurseries and mini-arboretums at forestry enterprises, urban stands, nurseries of decorative plants, garden centers, for the presence of Dothistroma needle blight. The species identification of the causative agent of the disease was carried out by mycological and molecular genetic methods. In this study, Dothistroma needle blight was revealed on individual trees of Pinus mugo, P. nigra and P. ponderosa in the stands of the Central Botanical Garden of the NAS of Belarus, the dendrological garden of the Glubokoe experimental forestry enterprise, in the nurseries of decorative plants in the Grodno and Minsk regions. In the collected samples of needles, the invasive species Dothistroma septosporum was identified. The frequency of occurrence of the pathogen was 4.8–7.2 %, the proportion of observation sites in which this disease was detected at 60 %. The detection of Dothistroma needle blight on pine trees, mainly on planting material imported from abroad, indicates a transboundary route of D. septosporum entering the country. Analysis of literature data indicates the potential danger of Dothistroma needle blight for pine stands in the republic, which in turn requires the organization of regular monitoring of the disease and the development of methods to limit the spread of D. septosporum in the republic.


2021 ◽  
Vol 7 (2) ◽  
pp. 111
Author(s):  
Martin S. Mullett ◽  
Rein Drenkhan ◽  
Kalev Adamson ◽  
Piotr Boroń ◽  
Anna Lenart-Boroń ◽  
...  

Dothistroma septosporum, the primary causal agent of Dothistroma needle blight, is one of the most significant foliar pathogens of pine worldwide. Its wide host and environmental ranges have led to its global success as a pathogen and severe economic damage to pine forests in many regions. This comprehensive global population study elucidated the historical migration pathways of the pathogen to reveal the Eurasian origin of the fungus. When over 3800 isolates were examined, three major population clusters were revealed: North America, Western Europe, and Eastern Europe, with distinct subclusters in the highly diverse Eastern European cluster. Modeling of historical scenarios using approximate Bayesian computation revealed the North American cluster was derived from an ancestral population in Eurasia. The Northeastern European subcluster was shown to be ancestral to all other European clusters and subclusters. The Turkish subcluster diverged first, followed by the Central European subcluster, then the Western European cluster, which has subsequently spread to much of the Southern Hemisphere. All clusters and subclusters contained both mating-types of the fungus, indicating the potential for sexual reproduction, although asexual reproduction remained the primary mode of reproduction. The study strongly suggests the native range of D. septosporum to be in Eastern Europe (i.e., the Baltic and Western Russia) and Western Asia.


2020 ◽  
Vol 3 (1) ◽  
pp. 89
Author(s):  
Kateryna Davydenko ◽  
Denis Baturkyn ◽  
Ihor Hnoievyi ◽  
Olena Shcherbak

Serious pine needle disease, Dothistroma needle blight (DNB), caused by Dothistroma septosporum and D. pini was detected in Ukraine in the period 2004–2005. The aim of this study was to identify the Dothistroma species present on new hosts in Ukraine using different molecular techniques to increase our understanding of the local distribution of these pathogens. The occurrence and distribution of DNB were studied between the years 2014 and 2018, and 480 needle samples were collected from 16 different regions in 96 localities—the presence of DNB was confirmed in 62 of them. The host range of DNB consisted of eight pine species, including three subspecies and two spruce species, among them Pinus nigra subsp. pallasiana and P. sylvestris were the most frequent hosts. Results showed that both D. septosporum and D. pini were present on P. nigra subsp. pallasiana on the same trees and even in the same needles. Moreover, D. septosporum was found first in Ukraine on Pinus ponderosa Douglas, Pinus banksiana Lamb and Pinus contorta Douglas in the arboretum as well as Picea pungens Engelm and Picea abies (L.) H. Karst. The suitability for the disease in the different forest types and the intensity of the disease are discussed.


Author(s):  
Katherine Tubby ◽  
Jack Forster

Abstract British forestry is threatened by numerous pests and diseases. This study investigated the potential for re-introduction of aerial pesticide applications for landscape-scale disease management. In North Scotland in 2013 and 2015, copper oxychloride was applied to Pinus sylvestris L. stands infected with Dothistroma septosporum (Dorogin) Morelet. Helicopters distributed ultra-low-volume (ULV) applications of product via Micronair rotary atomisers, following methods used against D. septosporum in P. radiata D. Don stands in New Zealand. Product deposition was quantified on paper catchers and in foliage, soil and water. Catchers 100 m beyond the plot boundaries intercepted 0.5 per cent of within-plot mean deposition. Foliar analysis revealed slightly elevated copper concentrations (+0.07 μg g−1 dw) 250 m outside plot boundaries. Copper in foliage and needle litter remained above background levels for 109 and 157 weeks after application, respectively, longer than recorded during New Zealand operations. Concentrations in the soil increased over 3 years’ monitoring, whilst deposition into water traps resulted in copper concentrations well within limits set by the Scottish Environmental Protection Agency. No deleterious impacts on vascular and non-vascular ground and canopy flora were recorded. Copper fungicide applications significantly reduced foliar infection at both sites but did not affect needle retention. Further ground-based trials will investigate the efficacy of other actives. In Britain, such aerial operations have not occurred for two decades: this study demonstrated aerial and ground teams have the necessary expertise for their re-introduction, whilst highlighting areas needing further optimization.


2020 ◽  
Vol 47 (2) ◽  
pp. 144-152
Author(s):  
Emília Ondrušková ◽  
Radovan Ostrovský ◽  
Zuzana Jánošíková ◽  
Katarína Adamčíková ◽  
Marek Kobza

AbstractDothistroma needle blight (DNB) is a disease of pine needles. It causes significant defoliation of affected trees; intensive attacks lead to damages of the whole stand. The relationship of trends in disease severity and intensity with climatic variables were studied in three Austrian pine plantations (Jahodná, Kálnica, Litava) during 2014–2018. During the monitoring period, the greatest variability in disease severity was observed in the top third of the crowns, which showed the highest correlation with the variants of the most important climatic conditions (temperature and relative humidity) tested. For the spread of DNB, based on statistical assessment, a higher number of intervals of environmentally favourable climatic conditions is crucial. Both Dothistroma species (D. septosporum and D. pini), which are causal agents of the disease, were identified in Jahodná. In Kálnica and Litava, only D. septosporum was present.


2020 ◽  
Author(s):  
Arnaud Capron ◽  
Nicolas Feau ◽  
Renate Heinzelmann ◽  
Irene Barnes ◽  
Andy Benowicz ◽  
...  

Many current tree improvement programs are incorporating assisted gene flow strategies to match reforestation efforts with future climates. This is the case for the lodgepole pine (Pinus contorta var. latifolia), the most extensively planted tree in western Canada. Knowledge of the structure and origin of pathogen populations associated with this tree would help improve the breeding effort. Recent outbreaks of the Dothistroma needle blight (DNB) pathogen Dothistroma septosporum on lodgepole pine in British Columbia and its discovery in Alberta plantations raised questions about the diversity and population structure of this pathogen in western Canada. Using genotyping-by-sequencing (GBS) on 119 D. septosporum isolates from 16 natural pine populations and plantations from this area, we identified four genetic lineages, all distinct from the other DNB lineages from outside of North America. Modeling of the population history indicated that these lineages diverged between 31.4 and 7.2k years ago, coinciding with the last glacial maximum and the post-glacial recolonization of lodgepole pine in western North America. The lineage found in the Kispiox Valley from British Columbia, where an unprecedented DNB epidemic occurred in the 1990s, was close to demographic equilibrium and displayed a high level of haplotypic diversity. Two lineages found in Alberta and Prince George (British Columbia) showed departure from random mating and contemporary gene flow, likely resulting from pine breeding activities and material exchanges in these areas. The increased movement of planting material could have some major consequences by facilitating secondary contact between genetically isolated DNB lineages, possibly resulting in new epidemics.


Sign in / Sign up

Export Citation Format

Share Document