height growth
Recently Published Documents


TOTAL DOCUMENTS

1238
(FIVE YEARS 188)

H-INDEX

50
(FIVE YEARS 3)

2022 ◽  
Vol 506 ◽  
pp. 119953
Author(s):  
Katsuhiro Nakao ◽  
Daisuke Kabeya ◽  
Yoshio Awaya ◽  
Shin Yamasaki ◽  
Ikutaro Tsuyama ◽  
...  

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Simone Vongkhamho ◽  
Akihiro Imaya ◽  
Kazukiyo Yamamoto ◽  
Chisato Takenaka ◽  
Hiroyuki Yamamoto

Teak is a globally valuable hardwood tree species, as its growth performance is important for timber productivity. The purpose of this study was to establish an effective management system for teak plantations in the Lao PDR. Using diameter at breast height (DBH) and height growth as significant indicators of growth performance, we investigated the relationship between tree growth curve parameters of teak and topographic conditions. Stem analysis data for 81 sample trees (three trees selected in canopy trees with predominant height in each plot) were examined for growth performance using the Mitscherlich growth function. The results of Spearman’s partial rank correlation indicated that the upper limits of DBH and tree height growth had significant negative correlations with the slope gradient and stand density. The curvature of DBH and tree height growth curves showed significant positive correlations with the slope form. Moreover, the elevation and slope gradient showed significant negative correlations with the curvature of tree height growth curve. However, the time lag of DBH growth showed a significant negative correlation with the slope position, while the slope gradient was positively correlated with the time lag of tree height growth. These results suggest that teak planted at lower slopes has faster growth rates and that there is an interaction with the gentle concave slope of this area.


2022 ◽  
Author(s):  
Martin Rylance ◽  
Yaroslav Korovaychuk

Abstract For as long as we have been performing hydraulic fracturing, we have been trying to ensure that we stay out of undesirable horizons, potentially containing water and/or gas. The holy grail of hydraulic fracturing, an absolute control of created fracture height, has eluded the industry for more than 70 years. Of course, there have been many that have claimed solutions, but all the marketed approaches have at best merely created a delay to the inevitable growth and at worst been a snake-oil approach with little actual merit. Fundamentally, the applied techniques have attempted to delay or influence the underlying equations of net-pressure and stress variation; but having to ultimately honour them and by doing so then condemned themselves to limited success or outright failure. Fast forward to 2020, and a reassessment of the relative importance of height-growth constraint and what may have changed to help us achieve this. The development of unconventionals are focused on creating as much surface area as possible in micro/nano-Darcy environments, across almost any phase, but with typically poor line of sight to profit. However, the more valuable business of conventional oil and gas is working in thinner and thinner reservoirs with an often-deteriorating permeability, but with a significantly higher potential economic return. What unconventional has successfully delivered however, is a rapid deployment and acceleration in a range of completion technologies that were unavailable just a few years ago. We will demonstrate that these technologies potentially offer the capability of finally being able to control fracture height-growth. Consideration of a range of previously applied height-growth approaches will demonstrate how they attempted to fool or fudge height growth creation mechanisms. With this clarity, we can consider what advances in completion technology may offer in terms of delivering height growth control. We suggest that with the technology and approaches that are currently available today, that height-growth control is finally within reach. We will go on to describe a multi-well Pilot program, in deployment and execution in 2020/021 in Western Siberia; where billions of barrels remain to be recovered in thin oil-rim, low permeability sandstone reservoirs below gas or above water. A comprehensive assessment of the myriad of height-growth approaches that have been utilized over the last 70 years was performed, but in each case demonstrated the fallibility and limitations of each of these. However, rather than the interpretation that such control is not achievable, instead we will show a mathematically sound approach, along with field data and evidence that this is possible. The presentation will demonstrate that completion advances over the last 10 - 15 years make this approach a reality in the present day; and that broader field implementation is finally within reach.


2022 ◽  
Author(s):  
Hashem Al-Obaid ◽  
Sultan A. Asel ◽  
Jon Hansen ◽  
Rio Wijaya

Abstract Many techniques have been used to model, diagnose and detect fracture dimension and propagation during hydraulic fracturing. Diagnosing fracture dimension growth vs time is of paramount importance to reach the desired geometry to maximize hydrocarbon production potential and prevent contacting undesired fluid zones. The study presented here describes a technique implemented to control vertical fracture growth in a tight sandstone formation being stimulated near a water zone. This gas well was completed vertically as openhole with Multi- Stage Fracturing (MSF). Pre-Fracturing diagnostic tests in combination with high-resolution temperature logs provided evidence of vertical fracture height growth downward toward water zone. Pre-fracturing flowback indicated water presence that was confirmed by lab test. Several actions were taken to mitigate fracture vertical growth during the placement of main treatment. An artificial barrier with proppant was placed in the lower zone of the reservoir before main fracturing execution. The rate and viscosity of fracturing fluids were also adjusted to control the net pressure aiming to enhance fracture length into the reservoir. The redesigned proppant fracturing job was placed into the formation as planned. Production results showed the effectiveness of the artificial lower barrier placed to prevent fracture vertical growth down into the water zone. Noise log consists of Sonic Noise Log (SNL) and High Precision Temperature (HPT) was performed. The log analysis indicated that two major fractures were initiated away from water-bearing zone with minimum water production. Additionally, in- situ minimum stress profile indicated no enough contrast between layers to help confine fracture into the targeted reservoir. Commercial gas production was achieved after applying this stimulation technique while keeping water production rate controlled within the desired range. The approach described in this paper to optimize gas production in tight formation with nearby water contact during hydraulic fracturing treatments has been applied with a significant improvement in well production. This will serve as reference for future intervention under same challenging completion conditions.


2022 ◽  
Author(s):  
Alexey Yudin ◽  
Mohamed ElSebaee ◽  
Vladimir Stashevskiy ◽  
Omar Almethen ◽  
Ahmed AlJanahi ◽  
...  

Abstract The Ostracod formation in the Awali brownfield is an extremely challenging layer to develop because the tight carbonate rock is interbedded with shaly streaks and because of the presence of a nearby water-bearing zone. Although the Ostracod formation has been in development since 1960, oil recovery has not yet reached 5% because past stimulation attempts experienced rapid production decline. The current project incorporated aggressive fracture design coupled with a unique height growth control (HGC) workflow, improving the development of Ostracod reserves. The HGC technology is a combination of an engineering workflow supported by geomechanical modeling and an advanced simulator of in-situ kinetics and materials transport to model the placement of a customized, impermeable mixture of particles that will restrict fracture growth. The optimized treatment design included injections of the HGC mixture prior to the main fracturing treatment. This injection was done with a nonviscous fluid to improve settling to create an artificial barrier. After the success of a trial campaign in vertical wells, the technique was adjusted for the horizontal wellbores. The high clay content within the Ostracod layers creates a significant challenge for successful stimulation. The high clay content prevents successful acid fracturing and leads to severe embedment with conventional proppant fracturing designs. We introduced a new approach to stimulate this formation with an aggressive tip-screenout design incorporating a large volume of 12/20-mesh proppant to obtain greater fracture width and conductivity, resulting in a significant and sustained oil production gain. The carefully designed HGC technique was efficient in avoiding fracture breakthrough into the nearby water zone, enabling treatments of up to 450,000 lbm to be successfully contained above a 20-ft-thick shaly barrier with small horizontal stress contrast. Independent measurements proved that the fracture height was successfully contained. This trial campaign in vertical wells proved that the combination of aggressive, large fracture designs with the HGC method could help unlock the Ostracod’s potential. Three horizontal wells were drilled and simulated, each with four stages of adjusted HGC technique to verify if this aggressive method was applicable to challenging sand admittance in case of transverse fractures. This rare implementation of HGC mixtures in horizontal wells showed operational success and proof of fracture containment based on pressure signatures and production monitoring. The applied HGC technique was modified with additional injections and improved by advanced modeling that only recently became available. These contributed to a significant increase of treatment volume, making the jobs placed in the Ostracod some of the world’s largest utilizing HGC techniques. The experience gained in this project can be of a paramount value to any project dealing with hydraulic fracturing near a water formation with insufficient or uncertain stress barriers.


FLORESTA ◽  
2022 ◽  
Vol 52 (1) ◽  
pp. 054
Author(s):  
Mário Dobner Jr.

Although A. angustifolia is currently economically unimportant, the worldwide trend of conservation through the sustainable use of natural resources together with an intense discussion of governmental regulations and the recent results of genetic breeding started in the 1970s are delivering promising perspectives for a new wave of plantations. This study aimed to determine optimal pruning strategies by evaluating the diameter and height growth of young A. angustifolia trees as affected by different pruning intensities. Pruning quality in terms of occlusion and defect-core size were also investigated. At the age of 6 years, the pruning experiment was started by conducting six different pruning intensities, named after the number of whorls left after pruning (0, 2, 4, 6, and 8), as well as unpruned (U) trees as a control. From the results obtained in the present study, it was concluded that pruning intensity had a significant negative effect on the growth of young A. angustifolia trees. Diameter was more affected than height growth. Pruning young A. angustifolia trees for knotty-free timber production must be conducted keeping 8 whorls after the intervention if no negative effect in current annual increment in diameter is to be observed when compared to unpruned trees. A defect core of 15 cm seems to be a feasible target for the species regarding optimal pruning intensity to avoid losses in diameter growth. This is strongly dependent on a fast occlusion process, which, in turn, is a result of a careful pruning technique.


2022 ◽  
Vol 42 ◽  
pp. 02012
Author(s):  
Marina Yu. Sautkina ◽  
Nina F. Kuznetsova ◽  
Michael A. Semenov ◽  
Andrew S. Khoroschev

The transition to biologically based technologies is one of the priority scientific areas of agriculture and forestry in Russia. The aim of the work is to develop and modify the technology of using biological products on forest tree species and to test it on Scots pine. The effect of pre-sowing inoculation of pine seeds with biological products on soil germination, safety of one- and two-year-old seedlings and their biometric characteristics was studied. The results of the analysis of soil germination of seeds and the safety of 1-year-old seedlings showed that these biological products can be introduced into the technology of growing planting material of Scots pine. It was revealed that the seeds of sensitive trees of the Stupinskaya population turned out to be the most responsive to inoculation with biological products. A stimulating effect has been established on the survival rate of seedlings, preservation, height, growth and diameter of 2-year-old plants in a forestry area (Vernadsky forestry, Tambov region). The height of 2-year-old seedlings of pine 'Ostrogozhskaya' exceeds the control by an average of 18.1%. The use of this biotechnology in forestry production will create favorable conditions for the germination of pine seeds, the growth of seedlings and their higher survival rate.


Sign in / Sign up

Export Citation Format

Share Document