Robust Stochastic Stability of Discrete-Time Markovian Jump Neural Networks with Leakage Delay

2014 ◽  
Vol 69 (1-2) ◽  
pp. 70-80 ◽  
Author(s):  
Mathiyalagan Kalidass ◽  
Hongye Su ◽  
Sakthivel Rathinasamy

This paper presents a robust analysis approach to stochastic stability of the uncertain Markovian jumping discrete-time neural networks (MJDNNs) with time delay in the leakage term. By choosing an appropriate Lyapunov functional and using free weighting matrix technique, a set of delay dependent stability criteria are derived. The stability results are delay dependent, which depend on not only the upper bounds of time delays but also their lower bounds. The obtained stability criteria are established in terms of linear matrix inequalities (LMIs) which can be effectively solved by some standard numerical packages. Finally, some illustrative numerical examples with simulation results are provided to demonstrate applicability of the obtained results. It is shown that even if there is no leakage delay, the obtained results are less restrictive than in some recent works.

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yujuan Tian ◽  
Fei Wang ◽  
Yao Wang ◽  
Xiaodi Li

Abstract In this paper, we investigate the stability of neural networks with both time-varying delays and uncertainties. A novel delayed intermittent control scheme is designed to ensure the globally asymptotical stability of the addressed system. Some new delay dependent sufficient criteria for globally asymptotical stability results are derived in term of linear matrix inequalities (LMIs) by using free-weighting matrix techniques and Lyapunov–Krasovskii functional method. Finally, a numerical simulation is provided to show the effectiveness of the proposed approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaofeng Chen ◽  
Qiankun Song ◽  
Yurong Liu ◽  
Zhenjiang Zhao

The impulsive complex-valued neural networks with three kinds of time delays including leakage delay, discrete delay, and distributed delay are considered. Based on the homeomorphism mapping principle of complex domain, a sufficient condition for the existence and uniqueness of the equilibrium point of the addressed complex-valued neural networks is proposed in terms of linear matrix inequality (LMI). By constructing appropriate Lyapunov-Krasovskii functionals, and employing the free weighting matrix method, several delay-dependent criteria for checking the globalμ-stability of the complex-valued neural networks are established in LMIs. As direct applications of these results, several criteria on the exponential stability, power-stability, and log-stability are obtained. Two examples with simulations are provided to demonstrate the effectiveness of the proposed criteria.


2015 ◽  
Vol 93 (4) ◽  
pp. 398-408 ◽  
Author(s):  
O.M. Kwon ◽  
M.J. Park ◽  
S.M. Lee ◽  
E.J. Cha

This paper proposes new delay-dependent stability criteria for discrete-time neural networks with interval time-varying delays and probabilistic occurring parameter uncertainties. It is assumed that parameter uncertainties are changed with the environment, explored using random situations, and its stochastic information is included in the proposed method. By constructing a suitable Lyapunov–Krasovskii functional, new delay-dependent stability criteria for the concerned systems are established in terms of linear matrix inequalities, which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed method.


Author(s):  
Ramachandran Raja ◽  
Rathinasamy Sakthivel ◽  
Selvaraj Anthoni ◽  
Hyunsoo Kim

Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delaysThe paper is concerned with stability analysis for a class of impulsive Hopfield neural networks with Markovian jumping parameters and time-varying delays. The jumping parameters considered here are generated from a continuous-time discrete-state homogenous Markov process. By employing a Lyapunov functional approach, new delay-dependent stochastic stability criteria are obtained in terms of linear matrix inequalities (LMIs). The proposed criteria can be easily checked by using some standard numerical packages such as the Matlab LMI Toolbox. A numerical example is provided to show that the proposed results significantly improve the allowable upper bounds of delays over some results existing in the literature.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Sreten Stojanovic ◽  
Milan Stojanovic ◽  
Milos Stevanovic

The delay-dependent stability problem is investigated for discrete-time neural networks with time-varying delays. A new augmented Lyapunov-Krasovskii functional (LKF) with single and double summation terms and several augmented vectors is proposed by decomposing the time-delay interval into two nonequidistant subintervals to derive less conservative stability conditions. Then, by using Wirtinger-based inequality, reciprocally, and extended reciprocally convex combination lemmas, tight estimations for sum terms in the forward difference of the LKF are given. Several zero equalities are introduced to further relax the existing results. Less conservative stability criteria are proposed in terms of linear matrix inequalities (LMIs). Finally, numerical examples are proposed to show the effectiveness and less conservativeness of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
O. M. Kwon ◽  
M. J. Park ◽  
Ju H. Park ◽  
S. M. Lee ◽  
E. J. Cha

The purpose of this paper is to investigate the delay-dependent stability analysis for discrete-time neural networks with interval time-varying delays. Based on Lyapunov method, improved delay-dependent criteria for the stability of the networks are derived in terms of linear matrix inequalities (LMIs) by constructing a suitable Lyapunov-Krasovskii functional and utilizing reciprocally convex approach. Also, a new activation condition which has not been considered in the literature is proposed and utilized for derivation of stability criteria. Two numerical examples are given to illustrate the effectiveness of the proposed method.


2011 ◽  
Vol 2011 ◽  
pp. 1-14
Author(s):  
Xing Yin ◽  
Jun Li ◽  
Weigen Wu ◽  
Qiranrong Tan

This paper deals with the problem of delay-dependent stability criterion of uncertain periodic switched recurrent neural networks with time-varying delays. When uncertain discrete-time recurrent neural network is a periodic system, it is expressed as switched neural network for the finite switching state. Based on the switched quadratic Lyapunov functional approach (SQLF) and free-weighting matrix approach (FWM), some linear matrix inequality criteria are found to guarantee the delay-dependent asymptotical stability of these systems. Two examples illustrate the exactness of the proposed criteria.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
N. Mala ◽  
A. R. Sudamani Ramaswamy

This paper is concerned with the passivity analysis of Markovian jumping neural networks with leakage time-varying delays. Based on a Lyapunov functional that accounts for the mixed time delays, a leakage delay-dependent passivity conditions are derived in terms of linear matrix inequalities (LMIs). The mixed delays includes leakage time-varying delays, discrete time-varying delays, and distributed time-varying delays. By employing a novel Lyapunov-Krasovskii functional having triple-integral terms, new passivity leakage delay-dependent criteria are established to guarantee the passivity performance. This performance not only depends on the upper bound of the time-varying leakage delay but also depends on the upper bound of the derivative of the time-varying leakage delay . While estimating the upper bound of derivative of the Lyapunov-Krasovskii functional, the discrete and distributed delays should be treated so as to appropriately develop less conservative results. Two numerical examples are given to show the validity and potential of the developed criteria.


2017 ◽  
Vol 11 (1) ◽  
pp. 1-13
Author(s):  
Yajun Li ◽  
Xisheng Dai ◽  
Wenping Xiao ◽  
Like Jiao

The stability problem for a class of stochastic neural networks with Markovian jump parameters and leakage delay is addressed in this study. The sufficient condition to ensure an exponentially stable stochastic neural networks system is presented and proven with Lyapunov functional theory, stochastic stability technique and linear matrix inequality method. The effect of leakage delay on the stability of the neural networks system is discussed and numerical examples are provided to show the correctness and effectiveness of the research results .


Sign in / Sign up

Export Citation Format

Share Document