scholarly journals Globalμ-Stability of Impulsive Complex-Valued Neural Networks with Leakage Delay and Mixed Delays

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaofeng Chen ◽  
Qiankun Song ◽  
Yurong Liu ◽  
Zhenjiang Zhao

The impulsive complex-valued neural networks with three kinds of time delays including leakage delay, discrete delay, and distributed delay are considered. Based on the homeomorphism mapping principle of complex domain, a sufficient condition for the existence and uniqueness of the equilibrium point of the addressed complex-valued neural networks is proposed in terms of linear matrix inequality (LMI). By constructing appropriate Lyapunov-Krasovskii functionals, and employing the free weighting matrix method, several delay-dependent criteria for checking the globalμ-stability of the complex-valued neural networks are established in LMIs. As direct applications of these results, several criteria on the exponential stability, power-stability, and log-stability are obtained. Two examples with simulations are provided to demonstrate the effectiveness of the proposed criteria.

2014 ◽  
Vol 69 (1-2) ◽  
pp. 70-80 ◽  
Author(s):  
Mathiyalagan Kalidass ◽  
Hongye Su ◽  
Sakthivel Rathinasamy

This paper presents a robust analysis approach to stochastic stability of the uncertain Markovian jumping discrete-time neural networks (MJDNNs) with time delay in the leakage term. By choosing an appropriate Lyapunov functional and using free weighting matrix technique, a set of delay dependent stability criteria are derived. The stability results are delay dependent, which depend on not only the upper bounds of time delays but also their lower bounds. The obtained stability criteria are established in terms of linear matrix inequalities (LMIs) which can be effectively solved by some standard numerical packages. Finally, some illustrative numerical examples with simulation results are provided to demonstrate applicability of the obtained results. It is shown that even if there is no leakage delay, the obtained results are less restrictive than in some recent works.


2011 ◽  
pp. 1208-1232
Author(s):  
Hamid Reza Karimi

An exponential H8 synchronization method is addressed for a class of uncertain master and slave neural networks with mixed time-delays, where the mixed delays comprise different neutral, discrete and distributed time-delays. An appropriate discretized Lyapunov-Krasovskii functional and some free weighting matrices are utilized to establish some delay-dependent sufficient conditions for designing a delayed state-feedback control as a synchronization law in terms of linear matrix inequalities under less restrictive conditions. The controller guarantees the exponential H8 synchronization of the two coupled master and slave neural networks regardless of their initial states. Numerical simulations are provided to demonstrate the effectiveness of the established synchronization laws.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
N. Mala ◽  
A. R. Sudamani Ramaswamy

This paper is concerned with the passivity analysis of Markovian jumping neural networks with leakage time-varying delays. Based on a Lyapunov functional that accounts for the mixed time delays, a leakage delay-dependent passivity conditions are derived in terms of linear matrix inequalities (LMIs). The mixed delays includes leakage time-varying delays, discrete time-varying delays, and distributed time-varying delays. By employing a novel Lyapunov-Krasovskii functional having triple-integral terms, new passivity leakage delay-dependent criteria are established to guarantee the passivity performance. This performance not only depends on the upper bound of the time-varying leakage delay but also depends on the upper bound of the derivative of the time-varying leakage delay . While estimating the upper bound of derivative of the Lyapunov-Krasovskii functional, the discrete and distributed delays should be treated so as to appropriately develop less conservative results. Two numerical examples are given to show the validity and potential of the developed criteria.


Author(s):  
Hamid Reza Karimi

An exponential H8 synchronization method is addressed for a class of uncertain master and slave neural networks with mixed time-delays, where the mixed delays comprise different neutral, discrete and distributed time-delays. An appropriate discretized Lyapunov-Krasovskii functional and some free weighting matrices are utilized to establish some delay-dependent sufficient conditions for designing a delayed state-feedback control as a synchronization law in terms of linear matrix inequalities under less restrictive conditions. The controller guarantees the exponential H8 synchronization of the two coupled master and slave neural networks regardless of their initial states. Numerical simulations are provided to demonstrate the effectiveness of the established synchronization laws.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaofeng Chen ◽  
Qiankun Song ◽  
Xiaohui Liu ◽  
Zhenjiang Zhao

The complex-valued neural networks with unbounded time-varying delays are considered. By constructing appropriate Lyapunov-Krasovskii functionals, and employing the free weighting matrix method, several delay-dependent criteria for checking the globalμ-stability of the addressed complex-valued neural networks are established in linear matrix inequality (LMI), which can be checked numerically using the effective LMI toolbox in MATLAB. Two examples with simulations are given to show the effectiveness and less conservatism of the proposed criteria.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Qiang Xi ◽  
Jianguo Si

We study a class of impulsive neural networks with mixed time delays and generalized activation functions. The mixed delays include time-varying transmission delay, bounded time-varying distributed delay, and discrete constant delay in the leakage term. By using the contraction mapping theorem, we obtain a sufficient condition to guarantee the global existence and uniqueness of the solution for the addressed neural networks. In addition, a delay-independent sufficient condition for existence of an equilibrium point and some delay-dependent sufficient conditions for stability are derived, respectively, by using topological degree theory and Lyapunov-Krasovskii functional method. The presented results require neither the boundedness, monotonicity, and differentiability of the activation functions nor the differentiability (even differential boundedness) of time-varying delays. Moreover, the proposed stability criteria are given in terms of linear matrix inequalities (LMI), which can be conveniently checked by the MATLAB toolbox. Finally, an example is given to show the effectiveness and less conservativeness of the obtained results.


2014 ◽  
Vol 556-562 ◽  
pp. 4386-4390
Author(s):  
Zhao Ping Yuan

This paper is concerned with the stabilization problem for fuzzy Markovian jumping systems with distributed time delay. First, fuzzy Markovian jumping systems with distributed time delay are peoposed. Second, a novel criterion of delay-dependent robust stabilization for fuzzy Markovian jumping systems is established in terms of linear matrix inequalities (LMIs) by using Lyapunov stability theory and free-weighting matrix method. When these LMIS are feasible, an explicit expression of a desired adjustable state feedback controller is given. Based on the obtained criterion, the introduced controller ensures the overall closed-loop system asymptotically stable in mean square sense for all admissible uncertainties and time delay.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yujuan Tian ◽  
Fei Wang ◽  
Yao Wang ◽  
Xiaodi Li

Abstract In this paper, we investigate the stability of neural networks with both time-varying delays and uncertainties. A novel delayed intermittent control scheme is designed to ensure the globally asymptotical stability of the addressed system. Some new delay dependent sufficient criteria for globally asymptotical stability results are derived in term of linear matrix inequalities (LMIs) by using free-weighting matrix techniques and Lyapunov–Krasovskii functional method. Finally, a numerical simulation is provided to show the effectiveness of the proposed approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Peng Wang ◽  
Haijun Hu ◽  
Zheng Jun ◽  
Yanxiang Tan ◽  
Li Liu

This paper aims at studying the problem of the dynamics of switched Cohen-Grossberg neural networks with mixed delays by using Lyapunov functional method, average dwell time (ADT) method, and linear matrix inequalities (LMIs) technique. Some conditions on the uniformly ultimate boundedness, the existence of an attractors, the globally exponential stability of the switched Cohen-Grossberg neural networks are developed. Our results extend and complement some earlier publications.


Sign in / Sign up

Export Citation Format

Share Document