scholarly journals Mark-recapture vs. line-transect abundance estimates of a coastal dolphin population: a case study of Tursiops truncatus from Laguna, southern Brazil

2017 ◽  
Vol 11 (1-2) ◽  
pp. 133-143 ◽  
Author(s):  
Fábio G. Daura-Jorge ◽  
Paulo César Simões-Lopes

Cetacean populations in coastal habitats are increasingly threatened by multiple anthropogenic impacts. Monitoring these populations to obtain robust estimates of abundance and detect trends over time is critical to achieve conservation goals. Here, we conducted a pilot study to evaluate the effectiveness of two commonly used abundance estimation methods: mark-recapture and distance sampling line-transect. Surveys were conducted to estimate the abundance of bottlenose dolphins in Laguna, southern Brazil. We implemented power-analysis models and compared both techniques in terms of cost, time and effectiveness to detect trends over a five-year period. Mark-recapture models were analyzed in MARK and resulted in an abundance of 50 individuals (CI = 39-64) with a coefficient of variation (CV) of 0.13. The line-transect models were implemented using the program DISTANCE and resulted in an estimate of 62 individuals (CI = 38-103), with a CV of 0.24. Comparing both approaches, mark-recapture resulted 1.30 time more expensive than line-transect for a single season of effort, but was twice as effective in terms of precision. As a consequence, the probability of detecting a 5% trend during a five-year period is 2.08 times higher with mark recapture. Conversely, the final cost to detect a trend with distance sampling is 1.19 time higher but considering six more years of effort. These results highlight the importance of selecting a-priori sampling design techniques that include developing pilot studies that evaluate the bias, precision and accuracy of estimates while considering costs involved. Considering the small population size estimated herein, the sensitivity of both approaches for detecting trends is not sufficient because the original population would be markedly reduced by the time a declining trend was detected. Thus, a precautionary approach is still imperative, even when robust estimates are obtained.

2008 ◽  
Vol 35 (7) ◽  
pp. 593 ◽  
Author(s):  
Vimoksalehi Lukoschek ◽  
B. Louise Chilvers

Marine megafauna populations in coastal waters are increasingly threatened by anthropogenic impacts. Moreton Bay, a large embayment in south-east Queensland, lies adjacent to one of the fastest growing regions in Australia and has a resident population of bottlenose dolphins, Tursiops aduncus. Evaluation of the effectiveness of any proposed management strategy requires robust population abundance estimates. We estimated abundances of bottlenose dolphins in central eastern Moreton Bay (350 km2) using two commonly used abundance estimation methods for cetaceans: photo-identification mark–recapture and line-transect surveys. Mark–recapture data were analysed in CAPTURE using a model that allowed capture probabilities to vary between sampling events and between individuals. Based on an estimated 76% of the population identifiable photographically, total abundance estimates were 673 ± 130 s.e. (1997) and 818 ± 152 s.e. (1998). Line-transect data, analysed using DISTANCE, gave an abundance estimate of 407 ± 113.5 s.e. (2000). These abundance estimates are large compared with many other coastal bottlenose dolphin populations. The line-transect surveys comprised a pilot study, and the lower line-transect abundance estimate is probably best attributable to methodological issues. In particular, smaller mean group size was estimated for the line-transects surveys (2.85 ± 0.29 s.e.) than the mark–recapture surveys (4.87 ± 0.39 s.e., 1997; 5.78 ± 0.73 s.e., 1998), and line-transect group sizes were probably underestimated. In addition, the line-transect detection probability (g(o)) was assumed to be one but was almost certainly less than one. However, the possibility of an actual decline in population size cannot be ruled out. Coefficients of variation (CV) were lower for mark–recapture than for line-transect surveys, however, CVs of line-transect estimates could be lowered through improved survey design. We evaluated the power of these surveys to detect trends in potential population declines for bottlenose dolphins in Moreton Bay and make recommendations for ongoing monitoring strategies.


2014 ◽  
Vol 5 (11) ◽  
pp. 1180-1191 ◽  
Author(s):  
Mary Louise Burt ◽  
David L. Borchers ◽  
Kurt J. Jenkins ◽  
Tiago A. Marques

2020 ◽  
Vol 28 (1) ◽  
pp. 181-195
Author(s):  
Quentin Vanhaelen

: Computational approaches have been proven to be complementary tools of interest in identifying potential candidates for drug repurposing. However, although the methods developed so far offer interesting opportunities and could contribute to solving issues faced by the pharmaceutical sector, they also come with their constraints. Indeed, specific challenges ranging from data access, standardization and integration to the implementation of reliable and coherent validation methods must be addressed to allow systematic use at a larger scale. In this mini-review, we cover computational tools recently developed for addressing some of these challenges. This includes specific databases providing accessibility to a large set of curated data with standardized annotations, web-based tools integrating flexible user interfaces to perform fast computational repurposing experiments and standardized datasets specifically annotated and balanced for validating new computational drug repurposing methods. Interestingly, these new databases combined with the increasing number of information about the outcomes of drug repurposing studies can be used to perform a meta-analysis to identify key properties associated with successful drug repurposing cases. This information could further be used to design estimation methods to compute a priori assessment of the repurposing possibilities.


Author(s):  
Katherine C Kral-O’Brien ◽  
Adrienne K Antonsen ◽  
Torre J Hovick ◽  
Ryan F Limb ◽  
Jason P Harmon

Abstract Many methods are used to survey butterfly populations, with line transect and area surveys being prominent. Observers are typically limited to search within 5 or 10 m from the line, while observers are unrestricted in larger specified search regions in area surveys. Although methods differ slightly, the selection is often based on producing defendable data for conservation, maximizing data quality, and minimizing effort. To guide method selection, we compared butterfly surveys using 1) line versus area methods and 2) varying width transects (5 m, 10 m, or unrestricted) using count data from surveys in North Dakota from 2015 to 2018. Between line and area surveys, we detected more individuals with area surveys, even when accounting for effort. However, both methods accumulated new species at similar rates. When comparing transect methodology, we detected nearly 60% more individuals and nine more species when transect width increased from 5 m to unrestricted, despite similar effort across methodology. Overall, we found line surveys slightly less efficient at detecting individuals, but they collected similar species richness to area surveys when accounting for effort. Additionally, line surveys allow the use of unrestricted-width transects with distance sampling procedures, which were more effective at detecting species and individuals while providing a means to correct count data over the same transect length. Methods that reduce effort and accurately depict communities are especially important for conservation when long-term datasets are unavailable.


2016 ◽  
Vol 94 (7) ◽  
pp. 505-515 ◽  
Author(s):  
Thomas A. Jefferson ◽  
Mari A. Smultea ◽  
Sarah S. Courbis ◽  
Gregory S. Campbell

The harbor porpoise (Phocoena phocoena (L., 1758)) used to be common in Puget Sound, Washington, but virtually disappeared from these waters by the 1970s. We conducted systematic aerial line-transect surveys (17 237 km total effort) for harbor porpoises, with the goal of estimating density and abundance in the inland waters of Washington State. Surveys in Puget Sound occurred throughout the year from 2013 to 2015, and in the Strait of Juan de Fuca and the San Juan Islands (and some adjacent Canadian waters) in April 2015. We used a high-wing, twin-engine Partenavia airplane and four observers (one on each side of the plane, one looking through a belly port, and one recording data). A total of 1063 harbor porpoise groups were sighted. Density and abundance were estimated using conventional distance sampling methods. Analyses were limited to 447 harbor porpoise groups observed during 5708 km of effort during good sighting conditions suitable for line-transect analysis. Harbor porpoises occurred in all regions of the study area, with highest densities around the San Juan Islands and in northern Puget Sound. Overall, estimated abundance for the Washington Inland Waters stock was 11 233 porpoises (CV = 37%, 95% CI = 9 616 – 13 120). This project clearly demonstrated that harbor porpoises have reoccupied waters of Puget Sound and are present there in all seasons. However, the specific reasons for their initial decline and subsequent recovery remain uncertain.


2011 ◽  
Vol 38 (3) ◽  
pp. 221 ◽  
Author(s):  
Tom A. Porteus ◽  
Suzanne M. Richardson ◽  
Jonathan C. Reynolds

Context Sampling methods to estimate animal density require good survey design to ensure assumptions are met and sampling is representative of the survey area. Management decisions are often made based on these estimates. However, without knowledge of true population size it is not possible for wildlife biologists to evaluate how biased the estimates can be if survey design is compromised. Aims Our aims were to use distance sampling to estimate population size for domestic sheep free-ranging within large enclosed areas of hill country and, by comparing estimates against actual numbers, examine how bias and precision are impaired when survey design is compromised. Methods We used both line and point transect sampling to derive estimates of density for sheep on four farms in upland England. In Stage I we used limited effort and different transect types to compromise survey design. In Stage II we increased effort in an attempt to improve on the Stage I estimates. We also examined the influence of a walking observer on sheep behaviour to assess compliance with distance sampling assumptions and to improve the fit of models to the data. Key results Our results show that distance sampling can lead to biased and imprecise density estimates if survey design is poor, particularly when sampling high density and mobile species that respond to observer presence. In Stage I, walked line transects were least biased; point transects were most biased. Increased effort in Stage II reduced the bias in walked line transect estimates. For all estimates, the actual density was within the derived 95% confidence intervals, but some of these spanned a range of over 100 sheep per km2. Conclusions Using a population of known size, we showed that survey design is vitally important in achieving unbiased and precise density estimation using distance sampling. Adequate transect replication reduced the bias considerably within a compromised survey design. Implications Management decisions based on poorly designed surveys must be made with an appropriate understanding of estimate uncertainty. Failure to do this may lead to ineffective management.


2008 ◽  
Vol 35 (4) ◽  
pp. 275 ◽  
Author(s):  
Rachel M. Fewster ◽  
Colin Southwell ◽  
David L. Borchers ◽  
Stephen T. Buckland ◽  
Anthony R. Pople

Line-transect distance sampling is a widely used method for estimating animal density from aerial surveys. Analysis of line-transect distance data usually relies on a requirement that the statistical distribution of distances of animal groups from the transect line is uniform. We show that this requirement is satisfied by the survey design if all other assumptions of distance sampling hold, but it can be violated by consistent survey problems such as responsive movement of the animals towards or away from the observer. We hypothesise that problems with the uniform requirement are unlikely to be encountered for immobile taxa, but might become substantial for species of high mobility. We test evidence for non-uniformity using double-observer distance data from two aerial surveys of five species with a spectrum of mobility capabilities and tendencies. No clear evidence against uniformity was found for crabeater seals or emperor penguins on the pack-ice in East Antarctica, while minor non-uniformity consistent with responsive movement up to 30 m was found for Adelie penguins. Strong evidence of either non-uniformity or a failure of the capture–recapture validating method was found for eastern grey kangaroos and red kangaroos in Queensland.


Sign in / Sign up

Export Citation Format

Share Document