scholarly journals Histological analysis of spermatogenesis and the germ cell seasonal development within the testis of domesticated tree shrews (Tupaia belangeri chinensis)

2021 ◽  
Author(s):  
J. Tang ◽  
G. He ◽  
Y. Yang ◽  
Q. Li ◽  
Y. He ◽  
...  
2001 ◽  
Vol 115 (4) ◽  
pp. 344-350 ◽  
Author(s):  
Alessandro Bartolomucci ◽  
Gabriel de Biurrun ◽  
Eberhard Fuchs

2015 ◽  
Vol 61 ◽  
pp. 417-423
Author(s):  
Zhang-qiong Huang ◽  
Xiao-mei Sun ◽  
Jie-jie Dai ◽  
Ming-liang Gu ◽  
You-song Ye ◽  
...  

2018 ◽  
Vol 13 (3) ◽  
pp. 85-91
Author(s):  
Lihong Xie ◽  
Menglin Wang ◽  
Ting Liao ◽  
Songhua Tan ◽  
Kai Sun ◽  
...  

2015 ◽  
Vol 523 (12) ◽  
pp. 1792-1808 ◽  
Author(s):  
P. Balaram ◽  
M. Isaamullah ◽  
H.M. Petry ◽  
M.E. Bickford ◽  
J.H. Kaas

Reproduction ◽  
2016 ◽  
Vol 152 (5) ◽  
pp. 379-388 ◽  
Author(s):  
Jonathan T Busada ◽  
Ellen K Velte ◽  
Nicholas Serra ◽  
Kenneth Cook ◽  
Bryan A Niedenberger ◽  
...  

We previously described a novel germ cell-specific X-linkedreproductivehomeoboxgene (Rhox13) that is upregulated at the level of translation in response to retinoic acid (RA) in differentiating spermatogonia and preleptotene spermatocytes. We hypothesize that RHOX13 plays an essential role in male germ cell differentiation, and have tested this by creating aRhox13gene knockout (KO) mouse.Rhox13KO mice are born in expected Mendelian ratios, and adults have slightly reduced testis weights, yet a full complement of spermatogenic cell types. Young KO mice (at ~7–8 weeks of age) have a ≈50% reduction in epididymal sperm counts, but numbers increased to WT levels as the mice reach ~17 weeks of age. Histological analysis of testes from juvenile KO mice reveals a number of defects during the first wave of spermatogenesis. These include increased apoptosis, delayed appearance of round spermatids and disruption of the precise stage-specific association of germ cells within the seminiferous tubules. Breeding studies reveal that both young and aged KO males produce normal-sized litters. Taken together, our results indicate that RHOX13 is not essential for mouse fertility in a controlled laboratory setting, but that it is required for optimal development of differentiating germ cells and progression of the first wave of spermatogenesis.


Sign in / Sign up

Export Citation Format

Share Document