Mud Bricks and the Process of Construction in the Middle Bronze Age Southern Levant

Author(s):  
Robert S. Homsher
PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0227255 ◽  
Author(s):  
Jane S. Gaastra ◽  
Tina L. Greenfield ◽  
Haskel J. Greenfield

Radiocarbon ◽  
2021 ◽  
pp. 1-31
Author(s):  
Johanna Regev ◽  
Yuval Gadot ◽  
Helena Roth ◽  
Joe Uziel ◽  
Ortal Chalaf ◽  
...  

ABSTRACT The following paper presents the results of radiocarbon (14C) dating of Middle Bronze Age (MB) contexts in Jerusalem. The dates, sampled with microarchaeology methods from three different locations along the eastern slopes of the city’s ancient core, reveal that Jerusalem was initially settled in the early phases of the period, with public architecture first appearing in the beginning of the 19th century BC and continued to develop until the 17th century BC. At that time, a curious gap in settlement is noted until the 16th century BC, when the site is resettled. The construction of this phase continued into the early 15th century BC. The dates presented are discussed in both the site-level, as well as their far-reaching implications regarding MB regional chronology. It is suggested here that the high chronology, dating the Middle Bronze Age between 2000 and 1600 BC is difficult to reconcile with dates from many sites. In contrast, a more localized chronology should be adopted, with the Middle Bronze Age continuing into the early 15th century BC in certain parts of the southern Levant, such as the region of Jerusalem.


Radiocarbon ◽  
2020 ◽  
pp. 1-36
Author(s):  
Patricia L Fall ◽  
Steven E Falconer ◽  
Felix Höflmayer

ABSTRACT We present two new Bayesian 14C models using IntCal20 that incorporate 17 new calibrated AMS ages for Early Bronze IV Tell Abu en-Ni‘aj and Middle Bronze Age Tell el-Hayyat, located in the northern Jordan Valley, Jordan. These freshly augmented suites of carbonized seed dates now include 25 AMS dates from Tell Abu en-Ni‘aj and 31 AMS dates from Tell el-Hayyat. The modeled founding date for Tell Abu en-Ni‘aj strengthens an emerging high chronology for Early Bronze IV starting by 2500 cal BC, while the end of its habitation by 2200 cal BC may exemplify a regional pattern of increasingly pervasive abandonment among late Early Bronze IV settlements in the Southern Levant. In turn, our modeled date for the Early Bronze IV/Middle Bronze Age transition at Tell el-Hayyat around 1900 cal BC pushes this interface about a century later than surmised traditionally, and its abandonment in Middle Bronze III marks an unexpectedly early end date before 1600 cal BC. These inferences, which coordinate Bayesian AMS models and typological ceramic sequences for Tell Abu en-Ni‘aj and Tell el-Hayyat, contribute to an ongoing revision of Early and Middle Bronze Age Levantine chronologies and uncoupling of their attendant interpretive links between the Southern Levant and Egypt.


Radiocarbon ◽  
2015 ◽  
Vol 57 (2) ◽  
pp. 217-235 ◽  
Author(s):  
Dafna Langgut ◽  
Israel Finkelstein ◽  
Thomas Litt ◽  
Frank Harald Neumann ◽  
Mordechai Stein

This article presents the role of climate fluctuations in shaping southern Levantine human history from 3600 to 600 BCE (the Bronze and Iron Ages) as evidenced in palynological studies. This time interval is critical in the history of the region; it includes two phases of rise and decline of urban life, organization of the first territorial kingdoms, and domination of the area by great Ancient Near Eastern empires. The study is based on a comparison of several fossil pollen records that span a north-south transect of 220 km along the southern Levant: Birkat Ram in the northern Golan Heights, Sea of Galilee, and Ein Feshkha and Ze'elim Gully both on the western shore of the Dead Sea. The vegetation history and its climatic implications are as follows: during the Early Bronze Age I (∼3600–3000 BCE) climate conditions were wet; a minor reduction in humidity was documented during the Early Bronze Age II–III (∼3000–2500 BCE). The Intermediate Bronze Age (∼2500–1950 BCE) was characterized by moderate climate conditions, however, since ∼2000 BCE and during the Middle Bronze Age I (∼1950–1750 BCE) drier climate conditions were prevalent, while the Middle Bronze Age II–III (∼1750–1550 BCE) was comparably wet. Humid conditions continued in the early phases of the Late Bronze Age, while towards the end of the period and down to ∼1100 BCE the area features the driest climate conditions in the timespan reported here; this observation is based on the dramatic decrease in arboreal vegetation. During the period of ∼1100–750 BCE, which covers most of the Iron Age I (∼1150–950 BCE) and the Iron Age IIA (∼950–780 BCE), an increase in Mediterranean trees was documented, representing wetter climate conditions, which followed the severe dry phase of the end of the Late Bronze Age. The decrease in arboreal percentages, which characterize the Iron Age IIB (∼780–680 BCE) and Iron Age IIC (∼680–586 BCE), could have been caused by anthropogenic activity and/or might have derived from slightly drier climate conditions. Variations in the distribution of cultivated olive trees along the different periods resulted from human preference and/or changes in the available moisture.


2022 ◽  
Vol 12 (2) ◽  
pp. 741
Author(s):  
Tzilla Eshel ◽  
Ofir Tirosh ◽  
Naama Yahalom-Mack ◽  
Ayelet Gilboa ◽  
Yigal Erel

The current study presents Ag isotopic values of 45 silver artifacts with known Pb isotopic composition from the Southern Levant. These items originate from seven pre-coinage silver hoards, dating from the Middle Bronze Age IIC to the end of the Iron Age (~1650–600 BCE). These are the earliest silver artifacts analyzed for Ag isotopes; all former studies were performed on coins. All the sampled silver in this study contains relatively unfractionated Ag (−2 ≤ ε109Ag ≤ 1.5) that was more likely produced from hypogene, primary Ag-bearing minerals (e.g., galena and jarosite) and not from native, supergene silver. Four of the sampled hoards containing silver from Anatolia and the West Mediterranean (Iberia and Sardinia) are associated with the Phoenician quest for silver (~950–700 BCE). A significant amount of this Phoenician silver (12/28 items) plots within a narrower range of −0.5 ≤ ε109Ag ≤ 0.5. This is in contrast to non-Phoenician silver, which mostly underwent some degree of fractionation (16/17 items ε109Ag ≥ I0.5I). The results suggest that while all silver was exploited from primary ore sources, the Phoenicians dug deeper into the deposits, reaching ore minerals that did not undergo any weathering-associated fractionation. The results also call for further investigation regarding the influence of sealing and bundling in silver hoards on post-depositional fractionation of Ag isotopes.


Sign in / Sign up

Export Citation Format

Share Document