A Multi-Omics Data Integration Method and Parametric Analysis on Large-Scale Colon Cancer Data

2020 ◽  
Vol 47 (8) ◽  
pp. 779-786
Author(s):  
Inuk Jung
2018 ◽  
Vol 62 (4) ◽  
pp. 563-574 ◽  
Author(s):  
Charlotte Ramon ◽  
Mattia G. Gollub ◽  
Jörg Stelling

At genome scale, it is not yet possible to devise detailed kinetic models for metabolism because data on the in vivo biochemistry are too sparse. Predictive large-scale models for metabolism most commonly use the constraint-based framework, in which network structures constrain possible metabolic phenotypes at steady state. However, these models commonly leave many possibilities open, making them less predictive than desired. With increasingly available –omics data, it is appealing to increase the predictive power of constraint-based models (CBMs) through data integration. Many corresponding methods have been developed, but data integration is still a challenge and existing methods perform less well than expected. Here, we review main approaches for the integration of different types of –omics data into CBMs focussing on the methods’ assumptions and limitations. We argue that key assumptions – often derived from single-enzyme kinetics – do not generally apply in the context of networks, thereby explaining current limitations. Emerging methods bridging CBMs and biochemical kinetics may allow for –omics data integration in a common framework to provide more accurate predictions.


2021 ◽  
Author(s):  
Kevin Chappell ◽  
Kanishka Manna ◽  
Charity L. Washam ◽  
Stefan Graw ◽  
Duah Alkam ◽  
...  

Multi-omics data integration of triple negative breast cancer (TNBC) provides insight into biological pathways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mario Zanfardino ◽  
Rossana Castaldo ◽  
Katia Pane ◽  
Ornella Affinito ◽  
Marco Aiello ◽  
...  

AbstractAnalysis of large-scale omics data along with biomedical images has gaining a huge interest in predicting phenotypic conditions towards personalized medicine. Multiple layers of investigations such as genomics, transcriptomics and proteomics, have led to high dimensionality and heterogeneity of data. Multi-omics data integration can provide meaningful contribution to early diagnosis and an accurate estimate of prognosis and treatment in cancer. Some multi-layer data structures have been developed to integrate multi-omics biological information, but none of these has been developed and evaluated to include radiomic data. We proposed to use MultiAssayExperiment (MAE) as an integrated data structure to combine multi-omics data facilitating the exploration of heterogeneous data. We improved the usability of the MAE, developing a Multi-omics Statistical Approaches (MuSA) tool that uses a Shiny graphical user interface, able to simplify the management and the analysis of radiogenomic datasets. The capabilities of MuSA were shown using public breast cancer datasets from TCGA-TCIA databases. MuSA architecture is modular and can be divided in Pre-processing and Downstream analysis. The pre-processing section allows data filtering and normalization. The downstream analysis section contains modules for data science such as correlation, clustering (i.e., heatmap) and feature selection methods. The results are dynamically shown in MuSA. MuSA tool provides an easy-to-use way to create, manage and analyze radiogenomic data. The application is specifically designed to guide no-programmer researchers through different computational steps. Integration analysis is implemented in a modular structure, making MuSA an easily expansible open-source software.


Author(s):  
Haitao Yang ◽  
Hongyan Cao ◽  
Tao He ◽  
Tong Wang ◽  
Yuehua Cui

Sign in / Sign up

Export Citation Format

Share Document