scholarly journals Resistivity structure of Izu-Oshima volcano revealed by the ELF-VLF magnetotelluric method.

1990 ◽  
Vol 42 (3) ◽  
pp. 169-194 ◽  
Author(s):  
Hisashi UTADA ◽  
Takafumi SHIMOMURA
2021 ◽  
Author(s):  
Agnis Triahadini ◽  
Koki Aizawa ◽  
Tasuku Hashimoto ◽  
Kazunari Uchida ◽  
Yuto Yamamoto ◽  
...  

<p>Unzen Volcano is located in Shimabara Peninsula, Nagasaki, Japan. After 198 years of dormancy, the volcano erupted throughout 1990-1995 and resulted the emergence of new lava dome called Heisei-Shinzan. Following the eruption, numerous studies have been intensively conducted in Unzen volcano to assess the eruption mechanism and the magma plumbing system. Regarding to the magmatic system, the most preferred model is that the primary supply of magma is stored beneath Chijiwa bay. This magma chamber is located about 15 km west of the active dome at vertical depth approximately 15 km, and followed by subordinate shallower magma chambers beneath the volcano (e.g. Nakamura 1995; Kohno et al 2008). Upon the eruption, the magma ascended obliquely towards the summit in east direction (e.g. Umakoshi et al 2001). However, how main magma chamber  and shallower chambers are connected to the summit via oblique pathway is poorly imaged in terms of structure.<br>As widely known, Magnetotelluric method is highly sensitive to low resistivity zone caused by interconnected fluids. Low resistivity zone detected in the volcanic area usually can be interpreted as hydrothermal/magmatic fluid and or magma chamber containing partial melt (e.g. Aizawa et al 2014; Hill et al 2015). Thus, by using broadband Magnetotelluric method, we aim to investigate resistivity structure of Unzen volcano associated with magmatic system and its controlling structure (e.g. pathway and faults).<br>Although the shallow structures around Unzen volcano are estimated by the 2017-2019 campaigns (Triahadini et al 2019; Hashimoto et al 2020), we are unable to image deeper structure around the proposed location of magma chambers and magma pathway. To achieve our goals, during November-December 2020, we installed 35 new sites to cover whole area in Shimabara Peninsula. In total, deployed 99 Magnetotelluric stations covering Unzen volcano and Shimabara Peninsula. On this meeting, we would like to present our resistivity structure derived from all dataset.</p>


2016 ◽  
Author(s):  
Robert Delhaye ◽  
Volker Rath ◽  
Alan G. Jones ◽  
Mark R. Muller ◽  
Derek Reay

Abstract. Galvanic distortions of magnetotelluric (MT) data, such as the static shift effect, are a known problem that can lead to incorrect estimation of resistivities and erroneous modelling of geometries with resulting misinterpretation of subsurface electrical resistivity structure. A wide variety of approaches have been proposed to account for these galvanic distortions, some depending on the target area, with varying degrees of success. The natural laboratory for our study is a hydraulically permeable volume of conductive sediment at depth, the internal resistivity structure of which can be used to estimate reservoir viability for geothermal purposes, however static shift correction is required in order to ensure robust and precise modelling accuracy. We propose a method employing frequency–domain electromagnetic data for static shift correction, which in our case are regionally available with high spatial density. The spatial distributions of the derived static shift corrections are analysed and applied to the uncorrected MT data prior to inversion. Two comparative inversion models are derived, one with and one without static shift corrections, with instructive results. As expected from the one–dimensional analogy of static shift correction, at shallow model depths, where the structure is controlled by a single local MT site, the correction of static shift effects leads to vertical scaling of resistivity-thickness products in the model, with the corrected model showing improved correlation to existing borehole wireline resistivity data. In turn, as these vertical scalings are effectively independent of adjacent sites, lateral resistivity distributions are also affected, with up to half a decade of resistivity variation between the models estimated at depths down to 2000 m. Simple estimation of differences in bulk porosity, derived using Archie’s Law, between the two models reinforces our conclusion that the sub–order of magnitude resistivity contrasts induced by correction of static shifts correspond to similar contrasts in estimated porosities, and hence, for purposes of reservoir investigation or similar cases requiring accurate absolute resistivity estimates, galvanic distortion correction, especially static shift correction, is essential.


2008 ◽  
Vol 5 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Pandey Dhananjai ◽  
MacGregor Lucy ◽  
Sinha Martin ◽  
Singh Satish

2009 ◽  
Vol 51 (1) ◽  
Author(s):  
A. Troiano ◽  
Z. Petrillo ◽  
M. G. Di Giuseppe ◽  
M. Balasco ◽  
I. Diaferia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document