unzen volcano
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 7)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kanta Miyano ◽  
Koki Aizawa ◽  
Takeshi Matsushima ◽  
Azusa Shito ◽  
Hiroshi Shimizu

AbstractSubsurface structures may control the migration of magma beneath a volcano. We used high-resolution seismic tomography to image a low- P-wave velocity (Vp) zone beneath Unzen Volcano, Japan, at depths of 3–16 km beneath sea level. The top of this low-Vp zone is located beneath Mt. Fugendake of Unzen volcano, which emitted 0.21 km3 of dacitic magma as lava domes and pyroclastic flows during eruptions in 1990–1995. Based on hypocenter migrations prior to the 1990–1995 eruptions and modeled pressure source locations for recorded crustal deformation, we conclude that the magma for the 1990–1995 eruptions migrated obliquely upward along the top of the low-Vp zone. As tectonic earthquakes occurred above the deeper part of the low-Vp zone, the deep low-Vp zone is interpreted to be a high-temperature region (> 400 °C) overlying the brittle–ductile transition. By further considering Vs and Vp/Vs structures, we suggest that the deeper part of the low-Vp zone constitutes a highly crystalized magma-mush reservoir, and the shallower part a volatile-rich zone.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 457
Author(s):  
Christopher Gomez ◽  
Yoshinori Shinohara ◽  
Haruka Tsunetaka ◽  
Norifumi Hotta ◽  
Balazs Bradak ◽  
...  

In the aftermath of pyroclastic density current-dominated eruptions, lahars are the main geomorphic agent, but at the decadal scale, different sets of processes take place in the volcanic sediment cascade. At Unzen volcano, in the Gokurakudani gully, we investigated the geomorphologic evolution and how the topographic change and the sediment change over time is controlling this transition. For this purpose, a combination of LiDAR data, aerial photography and photogrammetry, ground penetrating radar and sediment grain size analysis was done. The results show choking zones and zones of enlargement of the gully, partly controlled by pre-eruption topography, but also by the overlapping patterns of the pyroclastic flow deposits of 1990–1995. The ground penetrating radar revealed that on top of the typical lahar structure at the bottom of the gully, side wall collapses were trapping finer sandy sediments formed in a relatively low-energy deposition environment. This shows that secondary processes are taking place in the sediment transport process, on top of lahar activity, but also that these temporary dams may be a source of sudden sediment and water release, leading to lahars. Finally, the sediments from the gully walls are being preferentially oozed out of the pyroclastic flow deposit, meaning that over longer period of time, there may be a lack of fines, increasing permeability and reducing internal pore pressure needed for lahar triggering. It also poses the important question of how much of a past event one can understand from outcrops in coarse heterometric material, as the deposit structure can remain, even after losing part of its fine material.


2021 ◽  
Author(s):  
Yan Lavallée ◽  
Takahiro Miwa ◽  
James D. Ashworth ◽  
Paul A. Wallace ◽  
Jackie E. Kendrick ◽  
...  

Abstract. The permeability of magma in shallow volcanic conduits controls the fluid flow and pore pressure development that regulates gas emissions and the style of volcanic eruptions. The architecture of the permeable porous structure is subject to changes as magma deforms and outgasses during ascent. Here, we present a high-resolution study of the permeability distribution across two conduit shear zones (marginal and central) developed in the dacitic spine that extruded towards the closing stages of the 1991–1995 eruption at Unzen volcano, Japan. The marginal shear zone is approximately 3.2 m wide and exhibits a 2-m wide, moderate shear zone with porosity and permeability similar to the conduit core, transitioning into a ~1-m wide, highly-sheared region with relatively low porosity and permeability, and an outer 20-cm wide cataclastic fault zone. The low porosity, highly-sheared rock further exhibits an anisotropic permeability network with slightly higher permeability along the shear plane (parallel to the conduit margin) and is locally overprinted by oblique dilational Riedel fractures. The central shear zone is defined by a 3-m long by ~9-cm wide fracture ending bluntly and bordered by a 15–40 cm wide damage zone with an increased permeability of ~3 orders of magnitude; directional permeability and resultant anisotropy could not be measured from this exposure. We interpret the permeability and porosity of the marginal shear zone to reflect the evolution of compactional (i.e., ductile) shear during ascent up to the point of rupture, estimated by Umakoshi et al. (2008), at ~500 m depth. At this point the compactional shear zone would have been locally overprinted by brittle rupture, promoting the development of a shear fault and dilational Riedel fractures during repeating phases of increased magma ascent rate, enhancing anisotropic permeability that channels fluid flow into, and along, the conduit margin. In contrast, we interpret the central shear zone as a shallow, late-stage dilational structure, which partially tore the spine core with slight displacement. We explore constraints from monitored seismicity and stick-slip behaviour to evaluate the rheological controls, which accompanied the upward shift from compactional toward dilational shear as magma approached the surface, and discuss their importance in controlling the permeability development of magma evolving from overall ductile to increasingly brittle behaviour during ascent and eruption.


Author(s):  
Christopher Gomez ◽  
Yoshinori Shinohara ◽  
Haruka Tsunetaka ◽  
Norifumi Hotta ◽  
Balazs Bradak ◽  
...  

In the aftermath of pyroclastic-flow –dominated eruptions, lahars are the main geomorphic agent, but at the decadal scale, different sets of processes take place in the volcanic sediment cascade. At Unzen Volcano, in the Gokurakudani Gully we investigated the geomorphologic evolution and how the topographic change and the sediment change over time is controlling this transition. For this purpose, a combination of LiDAR data, aerial photography and photogrammetry, Ground Penetrating Radar and sediment grain-size analysis was done. The results show chocking zones and zones of enlargement of the gully, partly controlled by pre-eruption topography, but also by the overlapping patterns of the pyroclastic flow deposits of 1990 – 1995. The Ground Penetrating Radar revealed that on top of the typical lahar structure at the bottom of the gully, side-wall collapses were trapping finer sandy sediments formed in relatively low-energy deposition environment. This shows that secondary processes are taking place in the sediment transport process, on top of lahar activity, but also that these temporary dams may be a source of sudden sediment and water release, leading to lahars. Finally, the sediments from the gully walls are being preferentially oozed out of the pyroclastic-flow deposit, meaning that over longer period of time, there may be a lack of fines, increasing permeability and reducing internal pore-pressure needed for lahar triggering. It also poses the important question of how much of a past-event one can understand from outcrops in coarse heterometric material, as the deposit structure can remain, even after loosing part of its fine material.


2021 ◽  
Author(s):  
Agnis Triahadini ◽  
Koki Aizawa ◽  
Tasuku Hashimoto ◽  
Kazunari Uchida ◽  
Yuto Yamamoto ◽  
...  

<p>Unzen Volcano is located in Shimabara Peninsula, Nagasaki, Japan. After 198 years of dormancy, the volcano erupted throughout 1990-1995 and resulted the emergence of new lava dome called Heisei-Shinzan. Following the eruption, numerous studies have been intensively conducted in Unzen volcano to assess the eruption mechanism and the magma plumbing system. Regarding to the magmatic system, the most preferred model is that the primary supply of magma is stored beneath Chijiwa bay. This magma chamber is located about 15 km west of the active dome at vertical depth approximately 15 km, and followed by subordinate shallower magma chambers beneath the volcano (e.g. Nakamura 1995; Kohno et al 2008). Upon the eruption, the magma ascended obliquely towards the summit in east direction (e.g. Umakoshi et al 2001). However, how main magma chamber  and shallower chambers are connected to the summit via oblique pathway is poorly imaged in terms of structure.<br>As widely known, Magnetotelluric method is highly sensitive to low resistivity zone caused by interconnected fluids. Low resistivity zone detected in the volcanic area usually can be interpreted as hydrothermal/magmatic fluid and or magma chamber containing partial melt (e.g. Aizawa et al 2014; Hill et al 2015). Thus, by using broadband Magnetotelluric method, we aim to investigate resistivity structure of Unzen volcano associated with magmatic system and its controlling structure (e.g. pathway and faults).<br>Although the shallow structures around Unzen volcano are estimated by the 2017-2019 campaigns (Triahadini et al 2019; Hashimoto et al 2020), we are unable to image deeper structure around the proposed location of magma chambers and magma pathway. To achieve our goals, during November-December 2020, we installed 35 new sites to cover whole area in Shimabara Peninsula. In total, deployed 99 Magnetotelluric stations covering Unzen volcano and Shimabara Peninsula. On this meeting, we would like to present our resistivity structure derived from all dataset.</p>


2019 ◽  
Vol 60 (4) ◽  
pp. 791-826 ◽  
Author(s):  
Paul A Wallace ◽  
Jackie E Kendrick ◽  
Takahiro Miwa ◽  
James D Ashworth ◽  
Rebecca Coats ◽  
...  

2018 ◽  
Vol 22 (2) ◽  
pp. 273-286
Author(s):  
Xiao Shi ◽  
Yujing Jiang ◽  
Yasuyuki Hirakawa
Keyword(s):  

Solid Earth ◽  
2015 ◽  
Vol 6 (4) ◽  
pp. 1277-1293 ◽  
Author(s):  
O. D. Lamb ◽  
S. De Angelis ◽  
K. Umakoshi ◽  
A. J. Hornby ◽  
J. E. Kendrick ◽  
...  

Abstract. Rhythmic seismicity associated with spine extrusion is a well-documented phenomenon at a number of dome-forming volcanic systems. At Unzen volcano, Japan, a 4-year dome-forming eruption concluded with the emplacement of a spine from October 1994 to February 1995, offering a valuable opportunity to further investigate seismogenic processes at dome-forming volcanoes. Using continuous data recorded at a seismic station located close to the dome, this study explores trends in the seismic activity during the extrusion of the spine. We identify a total of 12 208 volcano-seismic events in the period between October 1994 and February 1995. Hourly event counts indicate cyclic activity with periods of ∼ 40 to ∼ 100 h, attributed to pulsatory ascent defined by strain localisation and faulting at the conduit margins. Waveform correlation revealed two strong clusters (a.k.a. multiplets, families) which are attributed to fracturing along the margins of the shallow, ascending spine. Further analysis indicates variable seismic velocities during the spine extrusion as well as migration of the cluster sources along the spine margins. Our interpretation of the results from seismic data analyses is supported by previously published field and experimental observations, suggesting that the spine was extruded along an inclined conduit with brittle and ductile deformation occurring along the margins. We infer that changes in stress conditions acting on the upper and lower spine margins led to deepening and shallowing of the faulting sources, respectively. We demonstrate that the combination of geophysical, field and experimental evidence can help improve physical models of shallow conduit processes.


Sign in / Sign up

Export Citation Format

Share Document