volcanic area
Recently Published Documents


TOTAL DOCUMENTS

404
(FIVE YEARS 120)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 9 ◽  
Author(s):  
Pedro A. Hernández ◽  
Kenji Nogami ◽  
Eleazar Padrón ◽  
Luis Somoza ◽  
Cecilia Amonte ◽  
...  

The gases dissolved in the waters of volcanic lakes can present a serious hazard if the physical-chemical conditions change due to variations in the supply of magmatic gases. The monitoring of gases such as CO2 and He help us understand the degassing process and their connection with magmatic/hydrothermal system. One of the most acidic volcanic lakes on the planet is the Yugama, on Kusatsu Shirane volcano (Japan). We report the results of an interdisciplinary study carried out in August 2013 at Yugama consisting of the first estimation of rate of diffuse CO2 emission, the chemical and isotopic analysis of water and dissolved gases in samples from vertical lake profiles, and an echo-sounding survey. The lake water has an average temperature of 24-25°C, pH 1.01, concentrations of SO42- between 1,227 and 1,654 mgL−1 and Cl− between 1,506 and 2,562 mgL−1, with gas bubbling at several locations and floating sulfur globules with sulfide inclusions. A total of 66 CO2 efflux measurements were taken at the lake surface by means of the floating accumulation chamber method to estimate the diffuse CO2 output from the studied area. CO2 efflux values ranged from 82 up to 25,800 g m−2 d−1. Estimation of the diffuse CO2 emission at Yaguma Crater Lake was 30 ± 12 t d−1. Normalized CO2 emission rate (assuming an area of 0.066 km2) was 454 t km−2 d−1, a value within the range of acid volcanic lakes. Vertical profiles of major ions and dissolved gases showed variations with increases in ion content and dissolved CO2 and He with depth. Acoustic imaging shows the presence of intense bubbling and provides important information on the bathymetry of the lake. The 50–200 kHz echograms exhibit frequent vertical plumes of rising gas bubbles. Within the crater-lake, three circular submarine vents have been identified showing flares due to a significant activity of sublacustrine emissions. This work shows the first data of diffuse CO2 degassing, dissolved gases in water and echosounding (ES) from Yugama Crater Lake. Periodic hydrogeochemical and hydroacoustic surveys at Yugama Crater Lakemay thus help to document changes in the state of activity of this high-risk volcanic area.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3445
Author(s):  
Gabriel Ricardo Cifuentes ◽  
Rosario Jiménez-Espinosa ◽  
Claudia Patricia Quevedo ◽  
Juan Jiménez-Millán

The volcanic area of the Paipa system (Boyacá, Colombia) contains a magmatic heat source and deep fractures that help the flow of hot and highly mineralized waters, which are further combined with cold superficial inputs. This mixed water recharges the Salitre River and downstream feeding Sochagota Lake. The incoming water can contribute to substantial increases in hydrothermal SO42−-Na water in the water of the Salitre River basin area, raising the salinity. An additional hydrogeochemical process occurs in the mix with cold Fe-rich water from alluvial and surficial aquifers. This salinized Fe-rich water feeds the Sochagota Lake, although the impact of freshwaters from rain on the hydrochemistry of the Sochagota Lake is significant. A series of hydrogeochemical, biogeochemical, and mineralogical processes occur inside the lake. The aim of this work was to study the influence of damming in the Sochagota Lake, which acts as a natural attenuation of contaminants such as high concentrations of metals and salty elements coming from the Salitre River. Damming in the Sochagota Lake is considered to be an effective strategy for attenuating highly mineralized waters. The concentrations of dissolved elements were attenuated significantly. Dilution by rainfall runoff and precipitation of iron sulfides mediated by sulfate-reducing bacteria in deposits rich in organic material were the main processes involved in the attenuation of concentrations of SO42−, Fe, As Cu, and Co in the lake water. Furthermore, the K-consuming illitization processes occurring in the sediments could favor the decrease in K and Al.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 478
Author(s):  
Iole Serena Diliberto ◽  
Marianna Cangemi ◽  
Antonina Lisa Gagliano ◽  
Salvatore Inguaggiato ◽  
Mariana Patricia Jacome Paz ◽  
...  

In a volcanic area, the composition of air is influenced by the interaction between fluids generated from many different environments (magmatic, hydrothermal, meteoric, and marine). Any physical and chemical variation in one of these subsystems is able to modify the outgassing dynamic. The increase of natural gas hazard, related to the presence of unhealthy components in air, may depend on temporary changes both in the pressure and chemical gradients that generate transient fluxes of gases and can have many different causes. Sometimes, the content of unhealthy gases approaches unexpected limits, without clear warning. In this case, an altered composition of the air can be only revealed after accurate sampling procedures and laboratory analysis. The investigations presented here are a starting point to response to the demand for a new monitoring program in the touristic area of Baia di Levante at Vulcano Island (Aeolian archipelago, Italy). Three multiparametric geochemical surveys were carried in the touristic area of Baia di Levante at Vulcano Island (Aeolian archipelago, Italy) in 2011, 2014, and 2015. Carbon dioxide (CO2) and hydrogen sulfide (H2S) are the main undesired components, usually present at the local scale. Anomalous CO2 and H2S outputs from soil and submarine bubbling vents were identified; the thermal anomaly of the ground was mapped; atmospheric concentrations of CO2 and H2S were measured in the air 30 cm above the ground surface. Atmospheric concentrations above the suggested limits for the wellbeing of human health were retrieved in open areas where tourists stay and where CO2 can accumulate under absence of wind.


2021 ◽  
Vol 13 (22) ◽  
pp. 4502
Author(s):  
Vito Romaniello ◽  
Claudia Spinetti ◽  
Malvina Silvestri ◽  
Maria Fabrizia Buongiorno

The aim of this work is to develop and test a simple methodology for CO2 emission retrieval applied to hyperspectral PRISMA data. Model simulations are used to infer the best SWIR channels for CO2 retrieval purposes, the weight coefficients for a Continuum Interpolated Band Ratio (CIBR) index calculation, and the factor for converting the CIBR values to XCO2 (ppm) estimations above the background. This method has been applied to two test cases relating to the LUSI volcanic area (Indonesia) and the Solfatara area in the caldera of Campi Flegrei (Italy). The results show the capability of the method to detect and estimate CO2 emissions at a local spatial scale and the potential of PRISMA acquisitions for gas retrieval. The limits of the method are also evaluated and discussed, indicating a satisfactory application for medium/strong emissions and over soils with a reflectance greater than 0.1.


Author(s):  
I. Camps Gamundi

In the summer of 1830 Charles Lyell carried out an expedition through Catalonia with the aim of learning about Olot volcanism. The most important route starts in Barcelona and reaches Ceret (Vallespir, Northern Catalonia), passing through high-value of geological and landscape such as Montjuïc, Montserrat, Súria, Cardona, the Lluçanès, the Vic plain, the Cabrerès, the Garrotxa volcanic area and the Salines massif. The implementation of a long-distance route similar to other thematic paths and focused on the teaching of geology and the interpretation of the landscape while following in the footsteps of this expedition (Lyell Route) can generate an original product in the line of sustainable tourism. This itinerary would bring socio-economic and scientific-cultural benefits to the territories through which it passes and to society as a whole. Finally, it is clear that to carry out this project optimally requires solid and assertive collaboration between different geological and environmental actors, especially those who develop their activity on the territory of the Lyell Route.


2021 ◽  
Vol 873 (1) ◽  
pp. 012002
Author(s):  
Pepen Supendi ◽  
Nanang T. Puspito ◽  
Andri Dian Nugraha ◽  
Sri Widiyantoro ◽  
Chalid Idham Abdullah ◽  
...  

Abstract Earthquake swarms commonly come approximately active tectonic and volcanic area. Interestingly, the swarm events occurred ~23 km southwest from Mt. Salak-Bogor, West Java, Indonesia, from August 10 to November 24, 2019, and were recorded by local/regional network of the Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG). Our previous study showed that in this area a destructive ML 4.6 earthquake with thrust faulting occurred on September 8, 2012. The double-difference method was applied to update the hypocenter locations from the BMKG data. In the time period of ~3.5 months, we relocated 79 swarm events with ~9.4 km depth average for local magnitude (ML) 2.2 to 4.2. The source mechanism result for selected events shows a strike-slip faulting. Our interpretation is that these swarm events are probably related to stress change due to volcano-tectonic activity.


2021 ◽  
Vol 32 (3) ◽  
pp. 79-88
Author(s):  
Daisaku KAWABATA ◽  
Haruo KIMURA ◽  
Yasuhira AOYAGI

2021 ◽  
Vol 33 (5) ◽  
pp. 571-589
Author(s):  
Mátyás Hencz ◽  
Tamás Biró ◽  
István János Kovács ◽  
Roland Stalder ◽  
Károly Németh ◽  
...  

Abstract. Structural hydroxyl content of volcanic quartz phenocrysts was investigated with unpolarized Fourier-transform infrared spectroscopy. The phenocrysts originated from five pyroclastic fallout deposits from the Bükk Foreland Volcanic Area (BFVA), Hungary, and two from the AD 1314 Kaharoa eruption (KH eruption), Okataina Volcanic Complex (Taupo Volcanic Zone), New Zealand. All investigated quartz populations contain structural hydroxyl content in a narrow range with an average of 9.3 (±1.7) wt ppm. The earlier correlated horizons in the BFVA had the same average structural hydroxyl content (within uncertainty). Thus, it can be concluded that the structural hydroxyl content does not depend on the geographical distance of outcrops of the same units or the temperature or type of the covering deposit. The rare outlier values and similar structural hydroxyl contents show that the fallout horizons cooled fast enough to retain their original structural hydroxyl content. The similarity of the structural hydroxyl contents may be the result of similar P, T, and x (most importantly H2O and the availability of other monovalent cations) conditions in the magmatic plumbing system just before eruption. Therefore, we envisage common physical–chemical conditions, which set the structural hydroxyl content in the quartz phenocrysts and, consequently, the water content of the host magma (∼ 5.5 wt %–7 wt % H2O) in a relatively narrow range close to water saturation.


2021 ◽  
Author(s):  
Manuel Titos ◽  
Beatriz Martínez Montesinos ◽  
Sara Barsotti ◽  
Laura Sandri ◽  
Arnau Folch ◽  
...  

Abstract. Volcanic eruptions are amongst the most jeopardizing natural events due to their potential impacts on life, assets, and environment. In particular, atmospheric dispersal of volcanic tephra and aerosols during the explosive eruptions poses a serious threat to life and has significant consequences for infrastructures and global aviation safety. The volcanic island of Jan Mayen, located in the North Atlantic under trans-continental air traffic routes, is considered the northernmost active volcanic area in the world, with at least five eruptive periods recorded during the last 200 years. However, quantitative hazard assessments on the possible consequences for air traffic of a future ash-forming eruption are nonexistent. This study presents the first comprehensive long-term volcanic hazard assessment for Jan Mayen volcanic island in terms of ash dispersal and airborne tephra concentration at different flight levels. In order to delve in the characterization and modelling of that potential impact, a probabilistic approach based on merging a large number of numerical simulations is adopted, varying the volcano’s Eruptive Source Parameters (ESPs) and meteorological scenario. Each ESP value is randomly sampled following a continuous Probability Density Function (PDF) defined from the Jan Mayen geological record. Over 20 years of climatic data are considered in order to explore the natural variability associated with meteorological conditions and used to run thousands of simulations of the ash dispersal model FALL3D on a 2 km-resolution grid. The simulated scenarios are combined to produce probability maps of airborne ash concentration, arrival time and persistence at different flight levels in the atmosphere. The resulting maps represent an aid to civil protection, decision makers and aviation stakeholders in assessing and preventing the potential impact from a future eruption at Jan Mayen.


2021 ◽  
Author(s):  
P. Wardaya

Petroleum exploration in sub-volcanic area always poses an inevitable challenge. Active seismic exploration method fails to obtain reliable imaging of the sediment beneath volcanic formation due to massive attenuation. This issue has been a long-standing problem in onshore seismic activity in Indonesia, especially in areas where volcanic formations present above the sedimentary formation of interest. To address this issue, we propose an alternative method utilizing a passive seismic approach to obtain reliable subsurface information. This paper discusses our experience in employing ambient noise tomography to evaluate the sedimentary structure beneath the volcanic area in Southern Malang, East Java. The passive seismic network deploying 70 seismometers were installed in a relatively regular grid. With the maximum offset between two furthest stations was 44.5km, we can capture the maximum wavelength of 15 km which is associated with the minimum frequency as low as 0.08 Hz to be used in the inversion. In principle, the seismometers record the coherent seismic noise coming from the atmospheric activity, sea wave, or industrial activity in the surface. Cross correlation between signal received in each station and their continuous stacking yields useful signals to reveal the dispersion curve which can produce the subsurface velocity profile through an inversion technique. From the inversion result we obtain the subsurface s-wave velocity structure down to a depth of 6 km. Higher s-wave velocity structure on the shallow depth in the northern area of the survey confirms the presence of the thick volcanic sediment situated near volcanic mountain. Towards the southern area we observe a slower s-wave velocity profile that indicates the thinning of volcanic formation. Although the method has successfully delivered a reliable s-wave structure over an entire survey area, its resolution is limited due to large spacing between stations. We suggest deploying denser stations to improve the velocity resolution.


Sign in / Sign up

Export Citation Format

Share Document