THE INFLUENCE OF EXTRACTS OF PRICKLY PEAR ON DIABETES MELLITUS

1930 ◽  
Vol 2 (11) ◽  
pp. 360-363 ◽  
Author(s):  
W. Wilson Ingram ◽  
G. V. Rudd
Medicina ◽  
2019 ◽  
Vol 55 (5) ◽  
pp. 138 ◽  
Author(s):  
Caroline A. Gouws ◽  
Ekavi N. Georgousopoulou ◽  
Duane D. Mellor ◽  
Andrew McKune ◽  
Nenad Naumovski

Background and Objectives: There is confusion as to which component of the Opuntia spp. cacti has demonstrated anti-hyperglycemic effects or anti-diabetic properties. It is important to clarify these health benefits due to the increasing need for prevention and treatment of chronic diseases. The aim of this review is to identify the effects of Opuntia spp. cacti consumption on biomedical measures; glucose and insulin with consideration of its’ components; fruit, leaf and combined or unidentified Opuntia spp. products. Materials and Methods: Prior to commencing the searches, this systematic review was registered with PROSPERO (CRD42018108765). Following the PRISMA 2009 guidelines, six electronic databases (Food Science and Technology Abstracts (EBSCO), Medline, Scopus, CINAHL, Web of Science and Cochrane) were searched for articles investigating the effect of Opuntia spp. consumption on glucose and insulin in humans. Results: Initially, 335 articles were sourced and filtered by exclusion criteria (human interventions, control trials and articles published in English) resulting in 20 relevant articles. The included studies were characterized by such plant components as fruit (n = 4), cladode (n = 12), and other Opuntia spp. products (n = 4), further separated by clinical populations (‘healthy’, hyperlipidemic, hypercholesterolemic, Type 2 Diabetes Mellitus). The findings of this review indicate variations in effects between cacti components and products. Cladode and select Opuntia spp. products predominately demonstrated significant reductions in serum glucose and insulin, indicating potential as a functional food candidate. Prickly Pear fruit was predominately reported to have no significant effects on glucose or insulin. The quality of evidence appeared to vary based on the type of Opuntia spp. product used. Studies that used specifically the fruit or cladode had high risk of bias, whereas studies which used combined Opuntia spp. products had a lower risk of bias. Numerous mechanisms of action were proposed where positive findings were reported, with emphasis on dualistic glucose-dependent and independent actions, however, mechanisms require further elucidation. Conclusion: Currently, there is a lack of evidence to support the recommendation of using Opuntia spp. fruit products as an alternative or complementary therapy in the reduction of risk or management of Type 2 Diabetes Mellitus. The Cladode does however show promise in potential glucose-lowering effects which warrant further investigation.


1998 ◽  
Vol 39 (5) ◽  
pp. 663-668 ◽  
Author(s):  
Harry N. Bawden ◽  
Aidan Stokes ◽  
Carol S. Camfield ◽  
Peter R. Camfield ◽  
Sonia Salisbury

Author(s):  
Bruce R. Pachter

Diabetes mellitus is one of the commonest causes of neuropathy. Diabetic neuropathy is a heterogeneous group of neuropathic disorders to which patients with diabetes mellitus are susceptible; more than one kind of neuropathy can frequently occur in the same individual. Abnormalities are also known to occur in nearly every anatomic subdivision of the eye in diabetic patients. Oculomotor palsy appears to be common in diabetes mellitus for their occurrence in isolation to suggest diabetes. Nerves to the external ocular muscles are most commonly affected, particularly the oculomotor or third cranial nerve. The third nerve palsy of diabetes is characteristic, being of sudden onset, accompanied by orbital and retro-orbital pain, often associated with complete involvement of the external ocular muscles innervated by the nerve. While the human and experimental animal literature is replete with studies on the peripheral nerves in diabetes mellitus, there is but a paucity of reported studies dealing with the oculomotor nerves and their associated extraocular muscles (EOMs).


1971 ◽  
Vol 104 (4) ◽  
pp. 442-444 ◽  
Author(s):  
R. Tankel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document