scholarly journals ON SOME MATÉRN COVARIANCE FUNCTIONS FOR SPATIO-TEMPORAL RANDOM FIELDS

2017 ◽  
Author(s):  
Ryan H.L. Ip ◽  
W.K. Li
2021 ◽  
Author(s):  
Kevin Bulthuis ◽  
Eric Y. Larour

Abstract. Assessing the impact of uncertainties in ice-sheet models is a major and challenging issue that needs to be faced by the ice-sheet community to provide more robust and reliable model-based projections of ice-sheet mass balance. In recent years, uncertainty quantification (UQ) has been increasingly used to characterize and explore uncertainty in ice-sheet models and improve the robustness of their projections. A typical UQ analysis involves first the (probabilistic) characterization of the sources of uncertainty followed by the propagation and sensitivity analysis of these sources of uncertainty. Previous studies concerned with UQ in ice-sheet models have generally focused on the last two steps but paid relatively little attention to the preliminary and critical step of the characterization of uncertainty. Sources of uncertainty in ice-sheet models, like uncertainties in ice-sheet geometry or surface mass balance, typically vary in space and potentially in time. For that reason, they are more adequately described as spatio(-temporal) random fields, which account naturally for spatial (and temporal) correlation. As a means of improving the characterization of the sources of uncertainties in ice-sheet models, we propose in this paper to represent them as Gaussian random fields with Matérn covariance function. The class of Matérn covariance functions provides a flexible model able to capture statistical dependence between locations with different degrees of spatial correlation or smoothness properties. Samples from a Gaussian random field with Matérn covariance function can be generated efficiently by solving a certain stochastic partial differential equation. Discretization of this stochastic partial differential equation by the finite element method results in a sparse approximation known as a Gaussian Markov random field. We solve this equation efficiently using the finite element method within the Ice-sheet and Sea-level System Model (ISSM). In addition, spatio-temporal samples can be generated by combining an autoregressive temporal model and the Matérn field. The implementation is tested on a set of synthetic experiments to verify that it captures well the desired spatial and temporal correlations. Finally, we demonstrate the interest of this sampling capability in an illustration concerned with assessing the impact of various sources of uncertainties on the Pine Island Glacier, West Antarctica. We find that both larger spatial and temporal correlations lengths will likely result in increased uncertainty in the projections.


2010 ◽  
Vol 105 (491) ◽  
pp. 1167-1177 ◽  
Author(s):  
Tilmann Gneiting ◽  
William Kleiber ◽  
Martin Schlather

2021 ◽  
Author(s):  
Lindsay Morris

<p><b>Spatial and spatio-temporal phenomena are commonly modelled as Gaussian processes via the geostatistical model (Gelfand & Banerjee, 2017). In the geostatistical model the spatial dependence structure is modelled using covariance functions. Most commonly, the covariance functions impose an assumption of spatial stationarity on the process. That means the covariance between observations at particular locations depends only on the distance between the locations (Banerjee et al., 2014). It has been widely recognized that most, if not all, processes manifest spatially nonstationary covariance structure Sampson (2014). If the study domain is small in area or there is not enough data to justify more complicated nonstationary approaches, then stationarity may be assumed for the sake of mathematical convenience (Fouedjio, 2017). However, relationships between variables can vary significantly over space, and a ‘global’ estimate of the relationships may obscure interesting geographical phenomena (Brunsdon et al., 1996; Fouedjio, 2017; Sampson & Guttorp, 1992). </b></p> <p>In this thesis, we considered three non-parametric approaches to flexibly account for non-stationarity in both spatial and spatio-temporal processes. First, we proposed partitioning the spatial domain into sub-regions using the K-means clustering algorithm based on a set of appropriate geographic features. This allowed for fitting separate stationary covariance functions to the smaller sub-regions to account for local differences in covariance across the study region. Secondly, we extended the concept of covariance network regression to model the covariance matrix of both spatial and spatio-temporal processes. The resulting covariance estimates were found to be more flexible in accounting for spatial autocorrelation than standard stationary approaches. The third approach involved geographic random forest methodology using a neighbourhood structure for each location constructed through clustering. We found that clustering based on geographic measures such as longitude and latitude ensured that observations that were too far away to have any influence on the observations near the locations where a local random forest was fitted were not selected to form the neighbourhood. </p> <p>In addition to developing flexible methods to account for non-stationarity, we developed a pivotal discrepancy measure approach for goodness-of-fit testing of spatio-temporal geostatistical models. We found that partitioning the pivotal discrepancy measures increased the power of the test.</p>


Sign in / Sign up

Export Citation Format

Share Document