scholarly journals Partially Linear Additive Functional Regression

2023 ◽  
Author(s):  
Xiaohui Liu ◽  
Wenqi Lu ◽  
Heng Lian ◽  
Yuzi Liu ◽  
Zhongyi Zhu
Author(s):  
Frédéric Ferraty ◽  
Philippe Vieu

This article presents a unifying classification for functional regression modeling, and more specifically for modeling the link between two variables X and Y, when the explanatory variable (X) is of a functional nature. It first provides a background on the proposed classification of regression models, focusing on the regression problem and defining parametric, semiparametric, and nonparametric models, and explains how semiparametric modeling can be interpreted in terms of dimension reduction. It then gives four examples of functional regression models, namely: functional linear regression model, additive functional regression model, smooth nonparametric functional model, and single functional index model. It also considers a number of new models, directly adapted to functional variables from the existing standard multivariate literature.


2019 ◽  
Vol 115 (530) ◽  
pp. 997-1010 ◽  
Author(s):  
Kyunghee Han ◽  
Hans-Georg Müller ◽  
Byeong U. Park

2013 ◽  
Vol 59 (2) ◽  
pp. 299-320
Author(s):  
M. Eshaghi Gordji ◽  
Y.J. Cho ◽  
H. Khodaei ◽  
M. Ghanifard

Abstract In this paper, we investigate the general solution and the generalized stability for the quartic, cubic and additive functional equation (briefly, QCA-functional equation) for any k∈ℤ-{0,±1} in Menger probabilistic normed spaces.


2004 ◽  
Vol 14 (06) ◽  
pp. 1975-1985
Author(s):  
RASTKO ŽIVANOVIĆ

The task of locating an arcing-fault on overhead line using sampled measurements obtained at a single line terminal could be classified as a practical nonlinear system identification problem. The practical reasons impose the requirement that the solution should be with maximum possible precision. Dynamic behavior of an arc in open air is influenced by the environmental conditions that are changing randomly, and therefore the useful practically application of parametric modeling is out of question. The requirement to identify only one parameter is yet another specific of this problem. The parameter we need is the one that linearly correlates the voltage samples with the current derivative samples (inductance). The correlation between the voltage samples and the current samples depends on the unpredictable arc dynamic behavior. Therefore this correlation is reconstructed using nonparametric regression. A partially linear model combines both, parametric and nonparametric parts in one model. The fit of this model is noniterative, and provides an efficient way to identify (pull out) a single linear correlation from the nonlinear time series.


Author(s):  
François Freddy Ateba ◽  
Manuel Febrero-Bande ◽  
Issaka Sagara ◽  
Nafomon Sogoba ◽  
Mahamoudou Touré ◽  
...  

Mali aims to reach the pre-elimination stage of malaria by the next decade. This study used functional regression models to predict the incidence of malaria as a function of past meteorological patterns to better prevent and to act proactively against impending malaria outbreaks. All data were collected over a five-year period (2012–2017) from 1400 persons who sought treatment at Dangassa’s community health center. Rainfall, temperature, humidity, and wind speed variables were collected. Functional Generalized Spectral Additive Model (FGSAM), Functional Generalized Linear Model (FGLM), and Functional Generalized Kernel Additive Model (FGKAM) were used to predict malaria incidence as a function of the pattern of meteorological indicators over a continuum of the 18 weeks preceding the week of interest. Their respective outcomes were compared in terms of predictive abilities. The results showed that (1) the highest malaria incidence rate occurred in the village 10 to 12 weeks after we observed a pattern of air humidity levels >65%, combined with two or more consecutive rain episodes and a mean wind speed <1.8 m/s; (2) among the three models, the FGLM obtained the best results in terms of prediction; and (3) FGSAM was shown to be a good compromise between FGLM and FGKAM in terms of flexibility and simplicity. The models showed that some meteorological conditions may provide a basis for detection of future outbreaks of malaria. The models developed in this paper are useful for implementing preventive strategies using past meteorological and past malaria incidence.


Sign in / Sign up

Export Citation Format

Share Document