scholarly journals Experimental Study on Energy Efficiency of Pneumatic Booster Valves with Energy Recovery

2020 ◽  
Vol 13 (1) ◽  
pp. 1-8
Author(s):  
Jongha LIM ◽  
Kohei IIDA ◽  
Kotaro TADANO ◽  
Toshiharu KAGAWA
2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Fan Yang ◽  
Kotaro Tadano ◽  
Gangyan Li ◽  
Toshiharu Kagawa

Factories are increasingly reducing their air supply pressures in order to save energy. Hence, there is a growing demand for pneumatic booster valves to overcome the local pressure deficits in modern pneumatic systems. To further improve energy efficiency, a new type of booster valve with energy recovery (BVER) is proposed. The BVER principle is presented in detail, and a dimensionless mathematical model is established based on flow rate, gas state, and energy conservation. The mathematics model was transformed into a dimensionless model by accurately selecting the reference values. Subsequently the dimensionless characteristics of BVER were found. BVER energy efficiency is calculated based on air power. The boost ratio is found to be mainly affected by the operational parameters. Among the structural ones, the recovery/boost chamber area ratio and the sonic conductance of the chambers are the most influential. The boost ratio improves by 15%–25% compared to that of a booster valve without an energy recovery chamber. The efficiency increases by 5%–10% depending on the supply pressure. A mathematical model is validated by experiment, and this research provides a reference for booster valve optimisation and energy saving.


2021 ◽  
Vol 6 (10) ◽  
pp. 141
Author(s):  
Catarina Jorge ◽  
Maria do Céu Almeida ◽  
Dídia Covas

This paper presents and discusses the application of a novel energy balance scheme for assessing energy efficiency in wastewater systems. The energy balance is demonstrated with a Portuguese real-life case study, using mathematical modelling to estimate the different energy components and to compute two energy efficiency indices. The total inflow intrinsic energy can represent a significant amount (>95%) of the total energy used in systems mainly composed of gravity sewers. The total input energy is significantly (four-times) higher in the wet season than in the dry season, mostly due to undue inflows (e.g., direct rainfall and infiltration). The potential for energy recovery strongly depends on the available head and flow rate at the delivery point, being 0.01 kWh/m3 in the current case, with a project payback period of 4 years. The energy balance components and the respective energy efficiency indices strongly depend on the considered reference elevation. Thus, a unique regional reference elevation is recommended in the calculations.


Energy ◽  
2021 ◽  
pp. 122550
Author(s):  
Zhen Tian ◽  
Wanlong Gan ◽  
Zhixin Qi ◽  
Molin Tian ◽  
Wenzhong Gao

Author(s):  
Ali Mohammad Ez Abadi ◽  
Meisam Sadi ◽  
Mahmood Farzaneh-Gord ◽  
Mohammad Hossein Ahmadi ◽  
Ravinder Kumar ◽  
...  

2018 ◽  
Vol 152 ◽  
pp. 431-437 ◽  
Author(s):  
Han Fengxia ◽  
Zhang Zhongbin ◽  
Huang Hu ◽  
Chen Zemin

2013 ◽  
Vol 639-640 ◽  
pp. 350-353 ◽  
Author(s):  
Xiao Hong Zheng ◽  
Zhu Li ◽  
Yuan Zhen Liu ◽  
Shang Song Qin

The durability of thermal insulation glazed hollow bead concrete, which is a kind of structure self-thermal insulation material produced in the background of building energy efficiency, has been systematically researched in order to make it with a good workability. Theoretical analysis and experimental study have been made from the raw materials and construction mixing proportion in the basis of the analysis to the influencing factors of its durability so as to can improve its durability.


Sign in / Sign up

Export Citation Format

Share Document