Experimental Study on Fuel Consumption and Energy Efficiency at Soymilk Cooking Using a Mini Boiler and Using a Gas Stove

Author(s):  
Umi Hanifah ◽  
Moeso Andrianto
2019 ◽  
Vol 161 (A2) ◽  

Energy efficiency subject has been gaining importance in maritime sector. The compressed air is a valuable energy source in operational manner, by the reason of intrinsic lack of efficiency in pressurization process. Operational pressure and leakage rate are the major variables which affect operational efficiency of the system. This study aims to reveal potential energy saving for the compressed air system. To this end, several pressure ranges, 29-30 bars to 14-18 bars, and different leakage rates 2.4% to 45% are evaluated. After the data was obtained from ships, thermodynamic calculations had been carried out. Optimization of pressure saves 47.3% in daily power requirement, 58,2% in compressed air unit cost, 18.4 and 57.4 tons of reduction in fuel consumption and CO2 emissions in a year respectively. High leakage rates can cause 2.7 times more power and fuel consumption. Finally, operating load, as an important indicator of compressor, makes imperfections identifiable.


Author(s):  
Masaru Tsujimoto ◽  
Mariko Kuroda ◽  
Naoto Sogihara

Greenhouse gas shall be reduced from shipping sector. For that purpose the regulation of EEDI (energy efficiency design index for new ships) and SEEMP (ship energy efficiency management plan) have been entry into force from 2013. In order to improve the energy efficiency in ship operation it is necessary to predict the fuel consumption accurately. In actual seas the wave effect is the dominant component of the external forces. In particular it is well known the bow shape above water affects the added resistance in waves. To reflect the effect of the bow shape a method which takes into account the result of simplified tank tests is proposed here. Using the results of tank tests the effect of the bow shape above water can be evaluated with accuracy as well as with robustness. Regarding to the fuel consumption it should be evaluated by combining the ship hydrodynamic performance with the engine characteristics. Especially the operating limits of the main engine, such as the torque limit and the over load protection, are affected to the ship hydrodynamic performance. In rough weather condition the revolution of the main engine will be reduced to be below the operating limits of the engine. This causes the large decrease of ship speed. To prevent the increase of fuel consumption, a control system by Fuel Index as an index of fuel injection has been applied to some ships. The calculation method for the fuel consumption by using Fuel Index is presented. In this paper following contents are reported; 1) development of a calculation method for the added resistance due to waves combined with the simplified tank tests in short waves, 2) comparison of the calculation method with onboard measurement, 3) development of a calculation method for the fuel consumption considering the engine operating mode in actual seas and 4) comparison of the method with onboard measurement of a container ship. From these investigations the availability of the present method is confirmed.


2021 ◽  
Vol 67 (No. 5) ◽  
pp. 45-52
Author(s):  
Gerhard Moitzi ◽  
Reinhard W. Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

Sustainable crop production requires an efficient usage of fossil energy. This six-year study on a silt loam soil (chernozem) analysed the energy efficiency of four tillage systems (mouldboard plough 25–30 cm, deep conservation tillage 35 cm, shallow conservation tillage 8–10 cm, no-tillage). Fuel consumption, total energy input (made up of both direct and indirect input), grain of maize yield, energy output, net-energy output, energy intensity and energy use efficiency were considered. The input rates of fertiliser, herbicides and seeds were set constant; measured values of fuel consumption were used for all tillage operations. Total fuel consumption for maize (Zea mays L.) production was 81.6, 81.5, 69.5 and 53.2 L/ha for the four tillage systems. Between 60% and 64% of the total energy input (17.0–17.4 GJ/ha) was indirect energy (seeds, fertiliser, herbicides, machinery). The share of fertiliser energy of the total energy input was 36% on average across all tillage treatments. Grain drying was the second highest energy consumer with about 22%. Grain yield and energy output were mainly determined by the year. The tillage effect on yield and energy efficiency was smaller than the growing year effect. Over all six years, maize produced in the no-tillage system reached the highest energy efficiency.  


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Sen-Hui Wang ◽  
Hai-Feng Li ◽  
Yong-Jie Zhang ◽  
Zong-Shu Zou

As energy efficiency becomes increasingly important to the steel industry, the iron ore sintering process is attracting more attention since it consumes the second large amount of energy in the iron and steel making processes. The present work aims to propose a prediction model for the iron ore sintering characters. A hybrid ensemble model combined the extreme learning machine (ELM) with an improved AdaBoost.RT algorithm is developed for regression problem. First, the factors that affect solid fuel consumption, gas fuel consumption, burn-through point (BTP), and tumbler index (TI) are ranked according to the attributes weightiness sequence by applying the RReliefF method. Second, the ELM network is selected as an ensemble predictor due to its fast learning speed and good generalization performance. Third, an improved AdaBoost.RT is established to overcome the limitation of conventional AdaBoost.RT by dynamically self-adjusting the threshold value. Then, an ensemble ELM is employed by using the improved AdaBoost.RT for better precision than individual predictor. Finally, this hybrid ensemble model is applied to predict the iron ore sintering characters by production data from No. 4 sintering machine in Baosteel. The results obtained show that the proposed model is effective and feasible for the practical sintering process. In addition, through analyzing the first superior factors, the energy efficiency and sinter quality could be obviously improved.


Author(s):  
Ali Mohammad Ez Abadi ◽  
Meisam Sadi ◽  
Mahmood Farzaneh-Gord ◽  
Mohammad Hossein Ahmadi ◽  
Ravinder Kumar ◽  
...  

Author(s):  
Masaru Tsujimoto ◽  
Naoto Sogihara ◽  
Mariko Kuroda ◽  
Akiko Sakurada

Greenhouse gas shall be reduced from shipping sector. For that purpose the regulation of EEDI (energy efficiency design index for new ships) and SEEMP (ship energy efficiency management plan) were entry into force from 2013. In order to improve energy efficiency of ships in service it is necessary to predict the fuel consumption in actual seas. In order to reduce GHG emission from ships, a Vessel Performance Simulator in Actual Seas has been developed. It simulates ship speed and fuel consumption at steady condition by using weather data and designated engine revolution. Physical models for hull, propeller, rudder and engine are used in the simulator. Especially steady wave forces, wind forces, drift forces, steering forces and engine/governor model are important factor for the estimation. The fuel consumption should be evaluated combined the ship hydrodynamic performance with the engine/governor characteristics. Considering the external forces by winds and waves, the operation point of the main engine is important for the estimation, since the torque limit and the other limit of the engine/governor are affected to the ship hydrodynamic performance. To prevent the increase of fuel consumption in service, the engine control system by the Fuel Index has been applied to present ships. In rough weather condition the revolution of the main engine is reduced to lower revolution by the Fuel Index limit. It causes the large decrease of ship speed but reduces the fuel consumption due to reduction of engine revolution. Using the simulator the navigation performance of a container ship, a RoRo vehicle carrier and a bulk carrier is simulated along the route. In this paper following contents are discussed; 1) evaluation of the physical model; steady wave forces, wind forces, drift forces, steering forces and engine/governor model, 2) simulation and validation of the physical model by tank tests and on-board measurements and 3) effectiveness of the ship performance simulator for GHG reduction.


2020 ◽  
Vol 318 ◽  
pp. 01014
Author(s):  
Ioan Radu Şugar ◽  
Mihai Banica

As the number of cars increases and large cities become more and more crowded, noise reduction becomes more and more important. The decrease of the fuel consumption and the increase of power to the same cylindrical capacity are always current topics. This paper’s aim is to bring a contribution to solving these problems. The proposed solution consists in the use of ceramic materials in the design of the combustion chamber.


Sign in / Sign up

Export Citation Format

Share Document