STUDY OF AIRFLOW AROUND SHIP WITH RIGID SAIL ARRAY AND POTENTIAL ARRAY PROPULSIVE POWER

Author(s):  
G M Atkinson

An array of rigid sails installed on a large powered ship could provide a viable means to reduce fuel oil consumption (FOC) and emissions by using the power of the wind as a source of supplementary propulsion. This paper describes the study of airflow around a concept ship design fitted with 14 segment rigid sails (SRS) using a virtual wind tunnel software application and also investigates the propulsive force that a fixed sail array could provide using computational fluid dynamics (CFD) analysis.

2019 ◽  
Vol 161 (A2) ◽  

An array of rigid sails installed on a large powered ship could provide a viable means to reduce fuel oil consumption (FOC) and emissions by using the power of the wind as a source of supplementary propulsion. This paper describes the study of airflow around a concept ship design fitted with 14 segment rigid sails (SRS) using a virtual wind tunnel software application and also investigates the propulsive force that a fixed sail array could provide using computational fluid dynamics (CFD) analysis.


2016 ◽  
Vol 819 ◽  
pp. 356-360
Author(s):  
Mazharul Islam ◽  
Jiří Fürst ◽  
David Wood ◽  
Farid Nasir Ani

In order to evaluate the performance of airfoils with computational fluid dynamics (CFD) tools, modelling of transitional region in the boundary layer is very critical. Currently, there are several classes of transition-based turbulence model which are based on different methods. Among these, the k-kL- ω, which is a three equation turbulence model, is one of the prominent ones which is based on the concept of laminar kinetic energy. This model is phenomenological and has several advantageous features. Over the years, different researchers have attempted to modify the original version which was proposed by Walter and Cokljat in 2008 to enrich the modelling capability. In this article, a modified form of k-kL-ω transitional turbulence model has been used with the help of OpenFOAM for an investigative CFD analysis of a NACA 4-digit airfoil at range of angles of attack.


2015 ◽  
Author(s):  
Brent S. Paul

The successful integration of aviation capabilities aboard ships is a complex endeavor that must balance ship design with the flight envelope of the helicopter. This can be particularly important when considering air wakes and other flow around the superstructure as it impacts the flight deck. This flow can generate unsteady structures that may interfere with safe helicopter operations. Computational fluid dynamics (CFD) is commonly used to characterize the flow field and assess potential impacts to the flight envelope, which can be used to help define an operating envelope for helicopter operations.


Sign in / Sign up

Export Citation Format

Share Document