flight envelope
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 56)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Zhidong Lu ◽  
Haichao Hong ◽  
Florian Holzapfel

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiqiang Wang ◽  
Huan Hu ◽  
Weicun Zhang ◽  
Zhongzhi Hu

Abstract Engine transient control has been challenging due to its stringent requirements from both performance and safety. Many methodologies have been proposed such as conventional schedule-based methods, linear parameter varying, multiobjective optimization and evolutionary computations etc. These approaches have been well-established and led to a series of significant results. However, they are either not providing limit protection or requiring exhaustive computational resources, particularly when generating results into full flight envelope applications. Consequently a compromise between limit protection and computational complexity is necessitated. This note considers a sequential quadratic programming (SQP)-based method for full flight envelope investigations. The proposed method can provide important design guidance and the corresponding claims are validated through detailed analysis and simulations.


2021 ◽  
pp. 1-11
Author(s):  
Zhidong Lu ◽  
Haichao Hong ◽  
Matthias Gerdts ◽  
Florian Holzapfel

Author(s):  
Hafiz Noor Nabi ◽  
Coen C. de Visser ◽  
Marilena D. Pavel ◽  
Giuseppe Quaranta

AbstractThe research presented in this paper focuses on the development of a quasi-Linear Parameter Varying (qLPV) model for the XV-15 tiltrotor aircraft. The specific category of qLPV modeling technique, known as the model stitching technique, is employed to model the time-varying dynamics of XV-15 tiltrotor aircraft over the entire flight envelope. In this modeling approach, discrete linear state-space models are interpolated through lookup tables as function of scheduling parameters with the implementation of nonlinear equations of motion. The XV-15 qLPV model is configured with four scheduling parameters: altitude, nacelle incidence angle, wing flap angle and velocity. Additionally, a computational complexity analysis is presented. In particular, computational sensitivity of qLPV models configured with lookup tables to number of states and number of scheduling parameters is demonstrated. This is done to show the feasibility of real-time implementation of qLPV models with increasing fidelity (number of states) and expanding dynamic flight envelope (number of scheduling parameters).


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5204
Author(s):  
Penghui Sun ◽  
Xi Wang ◽  
Shubo Yang ◽  
Bei Yang ◽  
Huairong Chen ◽  
...  

Nonlinear control problems in turbofan engines are challenging. No single nonlinear controller can achieve desired control effects in a full flight envelope, but in the case of multiple controllers, there exist problems in the bumpless transfer between different controllers. To this end, this paper presents a bumpless transfer mechanism for an uncertain switched system based on integral sliding mode control (ISMC), and the mechanism can be used for the speed control of turbofan engines. The uncertain switched system is used to describe the turbofan engine dynamics. Then, the ISMC controller is derived for subsystems of the uncertain switched system. A resetting scheme is introduced for the ISMC controller to ensure the continuity of control inputs during the controller transition, as well as the bumpless transfer. In view of the transient behavior caused by controller switching, the global stability of the switched system is analyzed using the multiple Lyapunov function approach and average dwell time condition. Simulation results validate that the designed resetting scheme can ensure the continuity of control input signals and avoid the instability caused by high-frequency controller switching, and increase the control effectiveness of the proposed ISMC method within the full flight envelope.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jiajie Chen ◽  
Zhongzhi Hu ◽  
Jiqiang Wang

Aero-engine real-time models are widely used in control system design, integration, and testing. They can be used as the basis for model-based engine intelligent controls and health management, which is critical to improve engine safety, reliability, economy, and other performance indicators. This article provides an up-to-date review on aero-engine real-time modeling methods, model adaptation techniques, and applications for the last several decades. Besides, future research directions are also discussed, mainly focusing on the following four areas:(1) verification of the aero-engine real-time model over the full flight envelope; (2) better balance between real-time performance and accuracy in simplified methods for the aero-thermodynamic component level models; (3) further improvement in the real-time performance for the identified nonlinear models over the full flight envelope; (4) improvement of hybrid on-board adaptive real-time models combining the advantages of both model-based and data-based on-board adaptive real-time modeling methods.


2021 ◽  
pp. 1-16
Author(s):  
Tom A. D. T. Rijndorp ◽  
Clark Borst ◽  
Coen C. de Visser ◽  
Olaf Stroosma ◽  
Marinus M. van Paassen ◽  
...  
Keyword(s):  

Author(s):  
Feng Lu ◽  
Zhaohong Yan ◽  
Jie Tang ◽  
Jinquan Huang ◽  
Xiaojie Qiu ◽  
...  

Nonlinear control of turbofan engines in the flight envelope has attracted much attention in consideration of the inherent nonlinearity of the engine dynamics. Most nonlinear control design techniques rely on the correction theory of reference model parameter to extend the typical flight operations from ground operation. However, dynamic uncertainties in flight envelope lead to the deviation of operating state, and it is negative to control performance. This article is to develop online correction neural network–based speed control approaches for the turbofan engine with dynamic uncertainty in the flight envelope. Two improved online correction nonlinear ways combined with nonlinear autoregressive moving average (NARMA) are proposed, such as gradient search nonlinear autoregressive moving average with feedback linearization (NARMA-L2) control and iterative learning NARMA-L2 control. The contribution of this article is to provide better control quality of fast regulation and less steady errors of engine speed by the proposed methodology in comparison to the conventional NARMA-L2 control. Some important results are reached on both turbofan engine controller design and dynamic uncertainty tolerance at the typical flight operations, and the numerical examples demonstrate the superiority of the proposed control in the flight envelope.


Sign in / Sign up

Export Citation Format

Share Document