scholarly journals INTEGRACuBe: Exploração de dados analíticos em RDF

2021 ◽  
Author(s):  
Jones O. Avelino ◽  
Kelli F. Cordeiro ◽  
Maria C. Cavalcanti
Keyword(s):  

O crescimento de conjuntos de dados disponíveis na Web que utilizam o padrão RDF propicia análises de dados que envolvem múltiplas dimensões. Segundo a W3C, um dos recursos para analisar dados multidimensionais é a utilização do vocabulário RDF Data Cube. Contudo ainda há uma carência de instrumentos de apoio para aplicação deste vocabulário em conjuntos de dados. Nesse sentido, este artigo propõe o INTEGRACuBe, um ambiente que utiliza um metaesquema e mecanismos semiautomatizados para apoiar o mapeamento de recursos de dados ao metamodelo RDF Data Cube. Como resultado, será possível a exploração de dados analíticos em RDF. Adicionalmente, um estudo de caso é apresentado no cenário de Gerência de Desenvolvimento de Software.

2020 ◽  
Vol 68 ◽  
pp. 103378 ◽  
Author(s):  
Pilar Escobar ◽  
Gustavo Candela ◽  
Juan Trujillo ◽  
Manuel Marco-Such ◽  
Jesús Peral

Semantic Web ◽  
2021 ◽  
pp. 1-35
Author(s):  
Nurefşan Gür ◽  
Torben Bach Pedersen ◽  
Katja Hose ◽  
Mikael Midtgaard

Large volumes of spatial data and multidimensional data are being published on the Semantic Web, which has led to new opportunities for advanced analysis, such as Spatial Online Analytical Processing (SOLAP). The RDF Data Cube (QB) and QB4OLAP vocabularies have been widely used for annotating and publishing statistical and multidimensional RDF data. Although such statistical data sets might have spatial information, such as coordinates, the lack of spatial semantics and spatial multidimensional concepts in QB4OLAP and QB prevents users from employing SOLAP queries over spatial data using SPARQL. The QB4SOLAP vocabulary, on the other hand, fully supports annotating spatial and multidimensional data on the Semantic Web and enables users to query endpoints with SOLAP operators in SPARQL. To bridge the gap between QB/QB4OLAP and QB4SOLAP, we propose an RDF2SOLAP enrichment model that automatically annotates spatial multidimensional concepts with QB4SOLAP and in doing so enables SOLAP on existing QB and QB4OLAP data on the Semantic Web. Furthermore, we present and evaluate a wide range of enrichment algorithms and apply them on a non-trivial real-world use case involving governmental open data with complex geometry types.


PIERS Online ◽  
2010 ◽  
Vol 6 (6) ◽  
pp. 504-508 ◽  
Author(s):  
Seung-Bum Kim ◽  
Eni Gerald Njoku

2018 ◽  
Author(s):  
Peter De Wolf ◽  
Zhuangqun Huang ◽  
Bede Pittenger

Abstract Methods are available to measure conductivity, charge, surface potential, carrier density, piezo-electric and other electrical properties with nanometer scale resolution. One of these methods, scanning microwave impedance microscopy (sMIM), has gained interest due to its capability to measure the full impedance (capacitance and resistive part) with high sensitivity and high spatial resolution. This paper introduces a novel data-cube approach that combines sMIM imaging and sMIM point spectroscopy, producing an integrated and complete 3D data set. This approach replaces the subjective approach of guessing locations of interest (for single point spectroscopy) with a big data approach resulting in higher dimensional data that can be sliced along any axis or plane and is conducive to principal component analysis or other machine learning approaches to data reduction. The data-cube approach is also applicable to other AFM-based electrical characterization modes.


2015 ◽  
Author(s):  
Mayank Kejriwal ◽  
Daniel P. Miranker
Keyword(s):  

2020 ◽  
Vol 13 (4) ◽  
pp. 798-807
Author(s):  
J. Kavitha ◽  
P. Arockia Jansi Rani ◽  
P. Mohamed Fathimal ◽  
Asha Paul

Background:: In the internet era, there is a prime need to access and manage the huge volume of multimedia data in an effective manner. Shot is a sequence of frames captured by a single camera in an uninterrupted space and time. Shot detection is suitable for various applications such that video browsing, video indexing, content based video retrieval and video summarization. Objective:: To detect the shot transitions in the video within a short duration. It compares the visual features of frames like correlation, histogram and texture features only in the candidate region frames instead of comparing the full frames in the video file. Methods: This paper analyses candidate frames by searching the values of frame features which matches with the abrupt detector followed by the correct cut transition frame with in the datacube recursively until it detects the correct transition frame. If they are matched with the gradual detector, then it will give the gradual transition ranges, otherwise the algorithm will compare the frames within the next datacube to detect shot transition. Results:: The total average detection rates of all transitions computed in the proposed Data-cube Search Based Shot Boundary Detection technique are 92.06 for precision, 96.92 for recall and 93.94 for f1 measure and the maximum accurate detection rate. Conclusion:: Proposed method for shot transitions uses correlation value for searching procedure with less computation time than the existing methods which compares every single frame and uses multi features such as color, edge, motion and texture features in wavelet domain.


Sign in / Sign up

Export Citation Format

Share Document