scholarly journals Energy Performance, Indoor Air Quality and Comfort in New Nearly Zero Energy Day-care Centres in Northern Climatic Conditions

2019 ◽  
Vol 24 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Kalle Kuusk ◽  
Ahmed Kaiser ◽  
Nicola Lolli ◽  
Jan Johansson ◽  
Tero Hasu ◽  
...  

The European energy policy pushes the member states to transform building stock into nearly Zero-Energy Buildings (nZEB). This paper is focused on data collected from existing nZEB day-care centres,in order to be able to assess possible differences between predicted and actual energy and indoorenvironmental performance. Building structures, service systems and the indoor climate and energyperformance of five day-care centres were investigated in Estonia, Finland and Norway.Indoor climate condition measurements showed that in general, the thermal environment and indoor airquality corresponded to the highest indoor climate categories I and II (EN 15251). Building heating andventilation systems in studied buildings are working without major problems. Good indoor climate conditions were also reflected in the occupant satisfaction questionnaires. For most of the studied buildings, over 80%of the people marked all indoor environment condition parameters (thermal comfort, indoor air quality,acoustics, odour and illuminance) acceptable. The thermal environment in the cooling season was reportedproblematic because it was lower than the minimum temperature for indoor climate category II.Energy consumption analysis showed that measured real energy use was higher, or even significantlyhigher, than the energy use calculated during the design phase. Potential causes of the higher actualenergy consumption are caused by differences of measured and designed solutions, methodology of theenergy calculations, and the differences in user behaviour.Lessons learnt from previously constructed day-care centres can be utilised in the planning and designof new nZEBs.

2012 ◽  
Vol 118 ◽  
pp. 1-7 ◽  
Author(s):  
Mélissa St-Jean ◽  
Annie St-Amand ◽  
Nicolas L. Gilbert ◽  
Julio C. Soto ◽  
Mireille Guay ◽  
...  

2019 ◽  
Vol 41 (3) ◽  
pp. 361-373
Author(s):  
Carlos Ochoa ◽  
Beth Massey

The existing residential building stock in many industrialized countries is large but extremely energy inefficient, despite the existence of energy directives that apply mostly to new construction. Prefabricated building refurbishment for energy upgrading is a viable option for the existing building stock, but solutions need to adapt to each case and usage in order to respond to specific requirements. The “RECO2ST” project (Horizon 2020) is used as example of a forecast methodology that can help achieve nearly zero energy refurbishments, through selection of innovative modular elements for the opaque and transparent areas of the building envelope, covering diverse energy reduction strategies while improving thermal comfort and indoor air quality. This integrated approach is not usual in the field. The Technical Note studies a series of facade and active window technologies that supply climate strategies such as insulation, heat recovery and ventilation. The methodology is demonstrated for three sample cases using a typical refurbishment scenario. It is evaluated through energy simulation and analysis of improvements in thermal comfort and indoor air quality indicators. Practical application: The methodology helps to reduce guesswork for actions to be taken in order to refurbish and upgrade the existing housing stock to comply with current energy directives. It takes into account at the same time energy performance and user comfort, as expressed through indoor air quality.


Author(s):  
Iveta Bullová ◽  
Peter Kapalo ◽  
Dušan Katunský

Air change rate is an important parameter for quantification of ventilation heat losses and also affects the indoor climate of buildings. Indoor air quality is significantly associated with ventilation. If air change isn't sufficient, trapped allergens, pollutants and irritants can degrade the indoor air quality and affect the well-being of a building's occupants. Many studies on ventilation and health have concluded that lower air change rates can have a negative effect on people’s health and low ventilation may result in an increase in allergic diseases. Quantification of air change rate is complicated, since it is affected by a number of parameters, of which the one of the most variable is the air-wind flow. This study aims to determination and comparison of values of the air change rate in two methods - by quantifying of aerodynamic coefficient Cp = Cpe - Cpi – so called aerodynamic quantification of the building and the methodology based on experimental measurements of carbon dioxide in the selected reference room in apartment building.


2019 ◽  
Vol 111 ◽  
pp. 02017 ◽  
Author(s):  
Mervi Ahola ◽  
Jorma Säteri ◽  
Laura Sariola

The Finnish Society of Indoor Air Quality and Climate (FiSIAQ) introduced a Classification of Indoor Climate, Construction Cleanliness, and Finishing Materials in 1995. The Classification of Indoor Climate has been revised to meet the new Decree on indoor air quality and ventilation, European standards and experience from users of the classification. The most significant change is that target values for concentration and the in/out ratio of fine particles have been added. Other adjustments have been made to ensure good indoor environment and energy efficiency, but with reasonable investments. The criteria for emissions from building material and furniture were also updated. The Building Information Foundation RTS sr has run the M1-labelling of building products since 1996. The voluntary approach has been proven to improve the IAQ in new buildings and to reduce emissions from building materials. The Classification of Indoor Environment 2018 is integrated part of the new RTS Environmental Classification system.


1978 ◽  
Vol 22 (1) ◽  
pp. 538-538
Author(s):  
James E. Woods

In response to current concerns about the depletion rates of non-renewable energy resources, new codes and standards have been promulgated which require improved construction techniques and reduced ventilation rates. While implementation of these codes and standards has reduced energy consumption rates, degradation of indoor air quality has also been reported. These complaints indicate that arbitrary reduction of ventilation rates can result in deleterious effects to the occupants. Thus, a compromise solution is required with the objective to provide a safe, healthy, and comfortable indoor environment by using materials and methods that optimize efficiency of energy use.


2016 ◽  
Vol 96 ◽  
pp. 277-284 ◽  
Author(s):  
V. Vasile ◽  
H. Petran ◽  
A. Dima ◽  
C. Petcu

Sign in / Sign up

Export Citation Format

Share Document