scholarly journals Synthesis and Characteristics of Microencapsulated Myristic Acid with TiO2 as Composite Thermal Energy Storage Materials

2021 ◽  
Author(s):  
Zhaohe WANG ◽  
Yanghua CHEN

To solve the issues of flowing and leaking of myristic acid (MA) as phase change energy storage material in practical application, a novel microencapsulated composite phase change energy storage material was prepared by sol-gel method using myristic acid (MA) as core material and titanium dioxide (TiO2) as shell material. The chemical structure, crystal structure, micromorphology, phase change characteristics and thermal stability of phase change microencapsulated energy storage materials were characterized by using Fourier transform infrared spectrometer (FT-IR), X-ray diffraction analyzer (XRD), field emission scanning electron microscope (FE-SEM), differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA). The consequents illustrated that the ideal sample melted at 54.97 °C with the latent heat of 55.76 J/g and solidified at 49.85 °C with the latent heat of 54.55 J/g. In general, the prepared microencapsulated phase change materials possessed good thermal properties and thermal stabilities. It is predicted that the shape-stabilized MA/TiO2 composites have great potential for thermal energy storage.

2000 ◽  
Author(s):  
Bing-Chwen Yang ◽  
Shr-Hau Huang ◽  
Hsiang-Hui Lin

Abstract In this paper, the feasibility of phase change material that used for thermal energy storage in the range of 400 ∼ 600°C in the form of latent heat is examined for nine different salts and eutectic salts. The Differential Scanning Calorimeter (DSC) was used to perform the quantitative measurement of the phase change temperature (Tm) and latent heat (ΔH). The thermal properties of NaCl-CaCl2 at repeated heating and cooling cycles were studied with a heating chamber. The quality observation for this phase change material was also performed with this heating chamber to understand its physical phenomena during heating and cooling process. It is found that NaCl-CaCl2 is a good candidate of thermal energy storage material for its stable properties, low cost, and no toxic. Finally, the thermal storage unit with NaCl-CaCl2 as thermal energy storage material was tested to study and evaluate its performance as the application in the waste heat recovery system.


1984 ◽  
Vol 77 (1-3) ◽  
pp. 241-249 ◽  
Author(s):  
R. Sakamoto ◽  
M. Kamimoto ◽  
Y. Takahashi ◽  
Y. Abe ◽  
K. Kanari ◽  
...  

1988 ◽  
Vol 123 ◽  
pp. 233-245 ◽  
Author(s):  
Y. Takahashi ◽  
M. Kamimoto ◽  
Y. Abe ◽  
R. Sakamoto ◽  
K. Kanari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document