binary eutectic
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 61)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 327 ◽  
pp. 26-32
Author(s):  
Franc Zupanič ◽  
Tonica Bončina

We have been developing Al-Mn-Cu based alloys alloyed with minor additions of different elements. Small additions of beryllium enhance the formation of the icosahedral quasicrystalline phase (IQC) during solidification, especially during ageing. Upon solidification, primary IQC-particles may form, with sizes, ranging from 5 to 50 μm. IQC is also present as a part of binary eutectic in the interdendritic regions. More importantly, nanosized quasicrystalline precipitates can form during T5-treatment at temperatures ranging from about 250−450 °C. They are, in fact, metastable precipitates transforming to ternary T-precipitates (Al20Mn3Cu2) phase above 450 °C. The heat resistance can be increased considerably by the addition of Sc and Zr by forming L12-precipitates in spaces between quasicrystalline precipitates. In this paper, we studied three alloys, two Al-Mn-Cu-Be alloys and an Al-Mn-Cu-Be-Sc-Zr alloy. The alloys were produced by vacuum induction melting and casting into a copper mould. We investigated the response of the alloys to different heat treatments and their heat resistance at higher temperatures. It was shown that the alloys could be precipitation strengthened by ageing at 300 °C and 400 °C. The hardness of the alloy stayed at relatively high levels even at 500 °C, while more substantial softening occurred at 600 °C.


2021 ◽  
Vol 2021 (3) ◽  
pp. 38-47
Author(s):  
D. A. Zakarian ◽  
◽  
A. V. Khachatrian ◽  

To calculate the linear coefficient of thermal expansion (LCTE) and its temperature dependence, a combination of the method of a priori pseudopotential and quasi-harmonic approximation (author's methods) is used. After approximating the results obtained for metal-like materials (carbides, borides, silicides), the LCTE is presented in an analytical form. In the case of quasi-binary eutectic systems based on carbides, borides, silicides, to estimate the interaction energy of the elements of two components, the concept of a virtual crystal (with a virtual cell) along the line of contact of two components is introduced. A virtual cell is assigned a volume average between the volume of a unit cell of two components, taking into account their concentration ratio. The components that make up the eutectic retain their crystal structure, their LCTE can be estimated as for pure components. Without taking into account the influence of interphase interaction, the LCTE of the eutectic system is determined using the rule of mixtures based on the LCTE components, taking into account their volume fraction. Taking into account the influence of the interface on thermal expansion is estimated by the virtual cell assigned to it. To determine the LCTE of the eutectic system, a ratio is proposed that connects the LCTE components and the docking boundaries through the concentration ratio. This method more realistically describes the structure of a quasi-binary eutectic. There is a consistency between the calculated and experimental data. Keywords: electron-ion system energy, interatomic interaction potential, quasiharmonic approximation, linear coefficient of thermal expansion, eutectic temperature.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1926
Author(s):  
Guadalupe Coyote-Dotor ◽  
José C. Páez-Franco ◽  
Daniel Canseco-González ◽  
Alejandra Núñez-Pineda ◽  
Alejandro Dorazco-González ◽  
...  

The mechanochemical synthesis of drug–drug solid forms containing metformin hydrochloride (MET·HCl) and thiazide diuretics hydrochlorothiazide (HTZ) or chlorothiazide (CTZ) is reported. Characterization of these new systems indicates formation of binary eutectic conglomerates, i.e., drug–drug eutectic solids (DDESs). Further analysis by construction of binary diagrams (DSC screening) exhibited the characteristic V-shaped form indicating formation of DDESs in both cases. These new DDESs were further characterized by different techniques, including thermal analysis (DSC), solid state NMR spectroscopy (SSNMR), powder X-ray diffraction (PXRD) and scanning electron microscopy–energy dispersive X-ray spectroscopy analysis (SEM–EDS). In addition, intrinsic dissolution rate experiments and solubility assays were performed. In the case of MET·HCl-HTZ (χMET·HCl = 0.66), we observed a slight enhancement in the dissolution properties compared with pure HTZ (1.21-fold). The same analysis for the solid forms of MET·HCl-CTZ (χMET·HCl = 0.33 and 0.5) showed an enhancement in the dissolved amount of CTZ accompanied by a slight improvement in solubility. From these dissolution profiles and saturation solubility studies and by comparing the thermodynamic parameters (ΔHfus and ΔSfus) of the pure drugs with these new solid forms, it can be observed that there was a limited modification in these properties, not modifying the free energy of the solution (ΔG) and thus not allowing an improvement in the dissolution and solubility properties of these solid forms.


Author(s):  
Junxia Wu ◽  
Peiyou Li ◽  
Hongfeng Dong ◽  
Yuefei Jia ◽  
Yaling Liu ◽  
...  

Abstract The composition design of complex concentrated alloys originates from the composition design of amorphous alloys. To expand the composition design of alloys, herein, the compositions of novel Ti–Co–Ni–Zr complex concentrated alloys were obtained by the proportional mixing of Ti2Co intermetallics and Ni64Zr36 binary eutectic. The theory and method of this new alloy design are also discussed. The as-cast Ti28Co14Ni37.12Zr20.88, Ti30Co15Ni35.2Zr19.8, and Ti32 . Co16Ni33.3Zr18.7 alloys were composed of body-centered cubic TiNi and Ti2Ni phases. The Ti28Co14Ni37.12Zr20.88 alloy exhibited high yield strength (2 164 MPa) and compressive strength (2 539 MPa) under quasi-static compression at roomtemperature. The high strength of Ti28Co14Ni37.12Zr20.88 alloy is related to the precipitation of Ti2Ni along the grain boundary and the precipitation in the crystal. This paper validates that using the proportional mixing method of intermetallics and eutectic alloy is an effective method to design complex concentrated alloys with high strength.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4588
Author(s):  
Abdul Wahid Shah ◽  
Seong-Ho Ha ◽  
Bong-Hwan Kim ◽  
Young-Ok Yoon ◽  
Hyun-Kyu Lim ◽  
...  

The current study investigated the microstructure modification in Al–6Mg–5Si–0.15Ti alloy (in mass %) through the minor addition of Ca using Mg + Al2Ca master alloy and heat treatment to see their impact on mechanical properties. The microstructure of unmodified alloy (without Ca) consisted of primary Al, primary Mg2Si, binary eutectic Al–Mg2Si, ternary eutectic Al–Mg2Si–Si, and iron-bearing phases. The addition of 0.05 wt% Ca resulted in significant microstructure refinement. In addition to refinement, lamellar to fibrous-type modification of binary eutectic Al–Mg2Si phases was also achieved in Ca-added (modified) alloy. This modification was related to increasing Ca-based intermetallics/compounds in the modified alloy that acted as nucleation sites for binary eutectic Al–Mg2Si phases. The dendritic refinement with Ca addition was related to the fact that it improves the efficacy of Ti-based particles (TiAl3 and TiB2) in the melt to act as nucleation sites. In contrast, the occupation of oxide bifilms by Ca-based phases is expected to force the iron-bearing phases (as iron-bearing phases nucleate at oxide films) to solidify at lower temperatures, thus reducing their size. The as-cast microstructure of these alloys was further modified by subjecting them to solution treatment at 540 °C for 6 h, which broke the eutectic structure and redistributed Mg2Si and Si phases in Al-matrix. Subsequent aging treatment caused a dramatic increase in the tensile strength of these alloys, and tensile strength of 291 MPa (with El% of 0.45%) and 327 MPa (with El% of 0.76%) was achieved for the unmodified alloy and modified alloy, respectively. Higher tensile strength and elongation of the modified alloy than unmodified alloy was attributed to refined dendritic structure and modified second phases.


Sign in / Sign up

Export Citation Format

Share Document