scholarly journals Current Challenges in Experimental Watershed Hydrology

Author(s):  
Wei-Zu Gu ◽  
Jiu-Fu Liu ◽  
Jia-Ju Lu ◽  
Jay Frentress
Keyword(s):  
2007 ◽  
Vol 43 (7) ◽  
Author(s):  
J. J. McDonnell ◽  
M. Sivapalan ◽  
K. Vaché ◽  
S. Dunn ◽  
G. Grant ◽  
...  

2020 ◽  
pp. 125898
Author(s):  
Feifei Dong ◽  
Aisha Javed ◽  
Ali Saber ◽  
Alex Neumann ◽  
Carlos Alberto Arnillas ◽  
...  

2013 ◽  
pp. 170-191
Author(s):  
Gordon B. Bonan
Keyword(s):  

2005 ◽  
Vol 2 (3) ◽  
pp. 639-690 ◽  
Author(s):  
G. P. Zhang ◽  
H. H. G. Savenije

Abstract. Based on the Representative Elementary Watershed (REW) approach, the modelling tool REWASH (Representative Elementary WAterShed Hydrology) has been developed and applied to the Geer river basin. REWASH is deterministic, semi-distributed, physically based and can be directly applied to the watershed scale. In applying REWASH, the river basin is divided into a number of sub-watersheds, so called REWs, according to the Strahler order of the river network. REWASH describes the dominant hydrological processes, i.e. subsurface flow in the unsaturated and saturated domains, and overland flow by the saturation-excess and infiltration-excess mechanisms. Through flux exchanges among the different spatial domains of the REW, surface and subsurface water interactions are fully coupled. REWASH is a parsimonious tool for modelling watershed hydrological response. However, it can be modified to include more components to simulate specific processes when applied to a specific river basin where such processes are observed or considered to be dominant. In this study, we have added a new component to simulate interception using a simple parametric approach. Interception plays an important role in the water balance of a watershed although it is often disregarded. In addition, a refinement for the transpiration in the unsaturated zone has been made. Finally, an improved approach for simulating saturation overland flow by relating the variable source area to both the topography and the groundwater level is presented. The model has been calibrated and verified using a 4-year data set, which has been split into two for calibration and validation. The model performance has been assessed by multi-criteria evaluation. This work is the first full application of the REW approach to watershed rainfall-runoff modelling in a real watershed. The results demonstrate that the REW approach provides an alternative blueprint for physically based hydrological modelling.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1485 ◽  
Author(s):  
Sara Donatich ◽  
Barbara Doll ◽  
Jonathan Page ◽  
Natalie Nelson

In some states, the Stream Quantification Tool (SQT) has been adopted to quantify functional change of stream mitigation efforts. However, the ability of the SQT protocol to predict biological function and uphold the premise of the Stream Functions Pyramid (Pyramid) remains untested. Macroinvertebrate community metrics in 34 headwater streams in Piedmont, North Carolina (NC, USA) were related to NC SQT protocol (version 3.0) factors and other variables relevant to ecological function. Three statistical models, including stepwise, lasso, and ridge regression were used to predict the NC Biotic Index (NCBI) and Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness using two datasets: 21 SQT variables and the SQT variables plus 13 additional watershed, hydraulic, geomorphic, and physicochemical variables. Cross-validation revealed that stepwise and ridge outperformed lasso, and that the SQT variables can reasonably predict biology metrics (R2 0.53–0.64). Additional variables improved prediction (R2 0.70–0.88), suggesting that the SQT protocol is lacking metrics important to macroinvertebrates. Results moderately support the Pyramid: highly predictive ridge models included metrics from all levels, while highly predictive stepwise models included metrics from higher levels, and not watershed hydrology. Reach-scale metrics were more important than watershed hydrology, providing encouragement for projects limited by watershed condition.


Sign in / Sign up

Export Citation Format

Share Document