scholarly journals Transition Modeling for Low to High Speed Boundary Layer Flows with CFD Applications

Author(s):  
Unver Kaynak ◽  
Onur Bas ◽  
Samet Caka Cakmakcioglu ◽  
Ismail Hakki Tuncer
2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Wenwu Zhou ◽  
Yu Rao ◽  
Hui Hu

An experimental investigation was conducted to quantify the characteristics of the turbulent boundary layer flows over a dimpled surface in comparison to those over a conventional flat plate. In addition to measuring surface pressure distributions to determine the friction factors of the test plates and to map the surface pressure inside the dimple cavity, a high-resolution digital particle image velocimetry (PIV) system was used to achieve detailed flow field measurements to quantify the characteristics of the turbulent boundary layer flows over the test plates and the evolution of the unsteady vortex structures inside the dimple cavity at the middle of the dimpled test plate. It was found that the friction factor of the dimpled plate would be about 30–80% higher than that of the flat plate, depending on the Reynolds number of the test cases. In comparison with those over a conventional flat surface, the flow characteristics of the turbulent boundary layer flows over the dimpled surface were found to be much more complicated with much stronger near-wall Reynolds stress and higher turbulence kinetic energy (TKE) levels, especially in the region near the back rims of the dimples. Many interesting flow features over the dimple surface, such as the separation of oncoming boundary layer flow from the dimpled surface when passing over the dimple front rim, the formation and periodic shedding of unsteady Kelvin–Helmholtz vortices in the shear layer over the dimple, the impingement of the high-speed incoming flow onto the back rim of the dimple, and the subsequent generation of strong upwash flow in the boundary flow to promote the turbulent mixing over the dimpled surface, were revealed clearly and quantitatively from the PIV measurement results. The quantitative measurement results are believed to be the first of its nature, which depict a vivid picture about the unique flow features over dimpled surfaces and their correlations with the enhanced heat transfer performance reported in previous studies.


2012 ◽  
Vol 629 ◽  
pp. 593-600
Author(s):  
Jing Yuan Liu ◽  
Zeng Hui Zhao

An improved K-ω model, which allows for compressible corrections, is proposed in this paper. Numerical scheme was established utilizing the improved Total Variation Diminishing (TVD) scheme and applying implicit scheme to the negative source terms of the turbulence model. Hypersonic flat-plate boundary-layer flows and hypersonic compression ramp flows marked with separation, reattachment and shock/boundary layer interactions are then computed. Comparisons between the computational results, the experimental results and the semi-empirical formulations show that the compressible correction term of the K-ω turbulence model is a pressure-dilatation correlation. In addition, for flow with separation and without separation, calculation results of wall pressures, friction coefficients and wall heat transfer rate distributions using the improved model and established scheme agree better with the experimental results than that using the original K-ω model.


Sign in / Sign up

Export Citation Format

Share Document