prediction and control
Recently Published Documents


TOTAL DOCUMENTS

792
(FIVE YEARS 131)

H-INDEX

39
(FIVE YEARS 6)

2022 ◽  
Vol Prépublication (0) ◽  
pp. I-XXXIII
Author(s):  
Kirsten Burkhardt-Bourgeois ◽  
Laurence Cohen

2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Sebastian-Camilo Vanegas-Ayala ◽  
Julio Barón-Velandia ◽  
Daniel-David Leal-Lara

Cultivating in greenhouses constitutes a fundamental tool for the development of high-quality crops with a high degree of profitability. Prediction and control models guarantee the correct management of environment variables, for which fuzzy inference systems have been successfully implemented. The purpose of this review is determining the various relationships in fuzzy inference systems currently used for the modelling, prediction, and control of humidity in greenhouses and how they have changed over time to be able to develop more robust and easier to understand models. The methodology follows the PRISMA work guide. A total of 93 investigations in 4 academic databases were reviewed; their bibliometric aspects, which contribute to the objective of the investigation, were extracted and analysed. It was finally concluded that the development of models based in Mamdani fuzzy inference systems, integrated with optimization and fuzzy clustering techniques, and following strategies such as model-based predictive control guarantee high levels of precision and interpretability.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 187
Author(s):  
Balázs Németh ◽  
Dániel Fényes ◽  
Zsuzsanna Bede ◽  
Péter Gáspár

This paper proposes enhanced prediction and control design methods for improving traffic flow with human-driven and automated vehicles. To achieve accurate prediction for the entire time horizon, data-driven and model-based prediction methods were integrated. The goal of the integration was to accurately predict the outflow of the traffic network, which was selected as the highway section in this paper. The proposed novel prediction method was used in the optimal design for calculating controlled inflows on highway ramps. The goal of the design was to reach the maximum outflow of the traffic network, even against disturbances on uncontrolled inflows of the network. The control design leads to an optimization problem based on the min–max principle, i.e., the traffic outflow is considered to be maximized by controlled inflows and to be minimized by uncontrolled inflows. The effectiveness of the prediction and the control methods through simulation examples are illustrated, i.e., traffic outflow can be maximized by the control system under various uncontrolled inflow values.


2021 ◽  
Vol 11 (23) ◽  
pp. 11501
Author(s):  
Shun Zhong ◽  
Suxia Zhang ◽  
Jie Yang ◽  
Yanan Zhang

Overhung rotors are widely used in the industrial field. However, compared with normal structure rotors, the prediction and control of overhung rotors cannot achieve good performance. The work aims to investigate the dynamical behaviours of an overhung rotor by means of correlation analysis, and find its possible application. In this work, based on a real type of rotor, the dynamic model of the rotor with overhang is established by means of the finite element method. Simulation of the dynamic model with different input positions and support stiffnesses is conducted. Based on the methodology of correlation analysis, by introducing a correlation parameter of a proportion of amplitude of measured signal and imbalance mass, the position which has most effect on the vibration is found. Meanwhile, an experiment on the same type of overhung rotor is carried out to validate the results. The numerical results and corresponding experimental results prove that the overhung node has the most effect on the vibration amplitudes of the measured points. Choosing the overhung node to add trial weight, the overhung rotor can be easily balanced. The theory provides an alternative approach to modal analysis which needs more knowledge of the system.


Author(s):  
Sebastián Espoz-Lazo ◽  
Claudio Hinojosa-Torres ◽  
Claudio Farías-Valenzuela ◽  
Sebastián Álvarez-Arangua ◽  
Paloma Ferrero-Hernández ◽  
...  

Several resistance training programs using conventional methodologies have been implemented with the purpose of improving the ability to perform power actions in handball, especially during the competitive season. In contrast, methodologies based on a contemporary perspective, which considers the human being as a self-regulating biological entity, and designed specifically for female college players, are scarce. The aim of this research was to investigate the effects of an eight-week resistance training program, in which the athletes were able to control the loads according to their self-perceived effort and rest on their repeated shuttle sprint and jump ability. The sample was composed of 16 female players of a handball team from the faculty of physics and mathematics sciences of a Chilean university. The RSSJA test was used to evaluate players’ conditions pre- and post-training program, and the self-perceived effort scale called OMNI-RES was used for the prediction and control of loads. Results indicated that, after the application of an eight-week resistance training program, significant improvements p ≤ 0.05 on the jump height (pre: 1836.4 W; average post: 2088.9 W) and running speed (average pre: 3.2 m/s; average post: 4.0 m/s) were obtained, as well as a significant reduction in the loss of power and speed between each set of the applied test.


Sign in / Sign up

Export Citation Format

Share Document