scholarly journals Tubular Heat Exchanger Fouling in Phosphoric Acid Concentration Process

Author(s):  
Rania Jradi ◽  
Ali Fguiri ◽  
Christophe Marvillet ◽  
Mohamed Razak Jeday

Fouling in phosphoric acid concentration is a persistent operational problem that compromises energy recovery in this process. Progress is hampered by the lack of quantitative knowledge of fouling dynamic effects on heat exchanger transfer. The object of this work is an experimental determination of the thermal fouling resistance in the tubular heat exchanger of phosphoric acid preheated installed in phosphoric acid concentration process. By measuring the inlet and outlet temperatures of phosphoric acid, steam temperature, suction and discharge pressure of the pump and acid density measurement, the overall heat transfer coefficient has been determined. The determination of the overall heat transfer coefficient with clean and fouled surfaces, allowed calculating the fouling resistance. The results from the heat exchanger studies showed that the fouling resistance increased with time and presented an asymptotic evolution in compliant with the proposed model by Kern and Seaton, with the existence of fluctuation. The poorly cleaned heat exchanger implied the absence of the induction period and caused, consequently, high values of the fouling resistance in a relatively short-time period.

2020 ◽  
Vol 330 ◽  
pp. 01038
Author(s):  
Rania Jradi ◽  
Christophe Marvillet ◽  
Mohamed Razak Jeday

Fouling in phosphoric acid concentration process of preheat exchangers is a chronic operational problem that compromises energy recovery in these systems. Progress is hindered by the lack of quantitative knowledge of the dynamic effects of fouling on heat exchanger transfer. The subject of this work is an experimental determination of the thermal fouling resistance in the graphite blocks heat exchanger installed in a phosphoric acid concentration process. By measuring the inlet and outlet temperatures and mass flows of fluids, the overall heat transfer coefficient has been determined. Determining the overall heat transfer coefficient for the heat exchanger with clean and fouled surfaces, the fouling resistance was calculated. The results obtained from the heat exchanger studied, show that the fouling resistance increase with time presenting an exponential evolution in agreement with the model suggested by Kern and Seaton, with the existence of fluctuation caused by the instability of the flow rate and the temperature. Bad cleaning of the heat exchanger involves the absence of the induction period and consequently, causes high values of the fouling resistance and of the deposit fouling during a relatively short period of time.


2019 ◽  
Vol 30 (6) ◽  
pp. 2935-2951 ◽  
Author(s):  
Tomasz Sobota

Purpose The knowledge of the heat transfer coefficient is important for the proper design of heat exchangers as well as for the determination of the working medium outlet temperatures. This paper aims to present a method of simultaneous determination of coefficients in correlation formulas for the Nusselt number on both sides of the heat transfer surface. Design/methodology/approach The idea of the developed method is based on determining such a values of the coefficients in Nusselt number correlations that fulfill the condition of equality between the measured and calculated temperature at the outlet of heat exchanger in terms of least squares method. To test the proposed method, a special experimental installation was built. The heat transfer in helically coiled tube-in-tube heat exchanger was examined for the wide range of temperature changes and volumetric flow rates of working fluid. Findings The simulation results were validated with an experimental data. The results show that the heat transfer coefficient of the counter-current is higher than the co-current flow in helically coiled heat exchanger. This phenomenon can be beneficial particularly in the laminar flow regime. Research limitations/implications The correlation for the Nusselt number as a function of the Reynolds and Prandtl numbers for hot and cold liquid was obtained with the least squares method for the experimental data. Practical implications The presented method allows for the simultaneous determination of heat transfer coefficient on both sides of the wall without the necessity of indirect calculation of the overall heat transfer coefficient. The presented method can be used in the thermal design of various type heat exchangers. Originality/value This work presents the new methodology of determination correlations for the helically coiled tube-in-tube heat exchanger for co-current and counter-current arrangement, which can be used in thermal design.


Sign in / Sign up

Export Citation Format

Share Document