phosphoric acid concentration
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 3)

Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 124
Author(s):  
Mohammad Saiful Nidzam ◽  
Md. Sohrab Hossain ◽  
Norli Ismail ◽  
Razam Abdul Latip ◽  
Muhammad Khalish Mohammad Ilias ◽  
...  

The presence of glyceryl esters (GE) and 3-monochloropropane-1,2-diol esters (3-MCPDE) in refined, bleached, and deodorized (RBD) palm oil is severely concerning to the palm oil consumer. In the present study, the influence of the phosphoric acid degumming process on the formation of GE and 3-MCDE and in the RBD palm oil was determined with varying the acid dose (0.03–0.06 wt%), temperature (70–100 °C), and reaction time (15–45 min). The experimental conditions of the acid degumming process were designed following the central composite design of experiments, and they were optimized using Response Surface Methodology (RSM) based on the minimal formation of GE and 3-MCDE in the RBD palm oil. The optimal experimental conditions of the acid degumming process were a reaction time of 30 min, phosphoric acid concentration of 0.06 wt%, and temperature of 90 °C. Under these experimental conditions, the minimal GE and 3-MCDE formation in RBD palm oil were determined to be 0.61 mg/kg and 0.59 mg/kg; respectively. Several analytical methods were employed to determine RBD palm oil quality, including color, phosphorus, free fatty acids (FFAs), peroxide values, and fatty acid properties. It was found that the phosphoric acid degumming of CPO effectively removed the phosphorus and hydroperoxide content without conceding the quality of palm oil.


2021 ◽  
Author(s):  
Roman Solovov ◽  
Anfisa Yu. Perevoznikova ◽  
Alexander F. Seliverstvov ◽  
Alexey V. Shapagin ◽  
Alexander M. Fedoseev ◽  
...  

Abstract A process of a mercerised cotton cellulose sample phosphorylation has been investigated. After oxidation a phosphorus content was determined by spectrophotometric analysis and it was in a range of 0.179 to 0.950 mmol g–1. A significant decrease in the tensile strength of the sample was found upon an increase of phosphoric acid concentration in a phosphorylating solution. Phosphorylated mercerized fabric contents more phosphorous as unmercerized fabric in 3 times. The sorption properties of phosphorylated cotton cellulose in aqueous solution containing Cu2+ were characterized. The maximum of static exchange capacity was found to be 1.48 ± 0.11 mmol g–1 for phosphorylated cotton with content 0.898 ± 0.090 mmol g–1 of phosphorus. The sorption of Cu2+ by single phosphorus-containing group occurs for samples with not exceeding 0.80 mmol g–1 of phosphorus. The preliminary studies of uranium(VI) micro quantities of radionuclides 241Am, 233U and 239Pu sorption from aqueous solution with phosphorylated textile demonstrated the high efficiency.


Author(s):  
Rania Jradi ◽  
Ali Fguiri ◽  
Christophe Marvillet ◽  
Mohamed Razak Jeday

Fouling in phosphoric acid concentration is a persistent operational problem that compromises energy recovery in this process. Progress is hampered by the lack of quantitative knowledge of fouling dynamic effects on heat exchanger transfer. The object of this work is an experimental determination of the thermal fouling resistance in the tubular heat exchanger of phosphoric acid preheated installed in phosphoric acid concentration process. By measuring the inlet and outlet temperatures of phosphoric acid, steam temperature, suction and discharge pressure of the pump and acid density measurement, the overall heat transfer coefficient has been determined. The determination of the overall heat transfer coefficient with clean and fouled surfaces, allowed calculating the fouling resistance. The results from the heat exchanger studies showed that the fouling resistance increased with time and presented an asymptotic evolution in compliant with the proposed model by Kern and Seaton, with the existence of fluctuation. The poorly cleaned heat exchanger implied the absence of the induction period and caused, consequently, high values of the fouling resistance in a relatively short-time period.


2020 ◽  
Vol 841 ◽  
pp. 273-277
Author(s):  
Ariany Zulkania ◽  
Muhammad Iqbal ◽  
Syamsumarlin

In this study, two types of adsorbent including activated carbon and bio-sorbent were produced from Palm fiber wastes (PFW), which were activated by phosphoric acid. The influence of adsorbent type and phosphoric acid concentration on methylene blue adsorption was investigated. The most optimum adsorbent was determined based on adsorption capacity and removal percentage of each adsorbent. The result shows that 9.984 mg/g of adsorption capacity and 99.84% of removal percentage were achieved in 90 minutes’ adsorption, which demonstrates the huge potential of bio-sorbent and was chosen to be the most optimum adsorbent based on methylene blue removal. The characterization of bio-sorbent was then investigated using FTIR and SEM. FTIR result shows that bio-sorbent contains cellulose which affected the adsorption process while SEM result shows the cleaner pores and surface compared to bio-sorbent before activation.


2020 ◽  
Vol 56 (7) ◽  
pp. 2313-2324
Author(s):  
Ali Fguiri ◽  
Rania Jradi ◽  
Christophe Marvillet ◽  
Mohamed Razak Jeday

2020 ◽  
Vol 330 ◽  
pp. 01038
Author(s):  
Rania Jradi ◽  
Christophe Marvillet ◽  
Mohamed Razak Jeday

Fouling in phosphoric acid concentration process of preheat exchangers is a chronic operational problem that compromises energy recovery in these systems. Progress is hindered by the lack of quantitative knowledge of the dynamic effects of fouling on heat exchanger transfer. The subject of this work is an experimental determination of the thermal fouling resistance in the graphite blocks heat exchanger installed in a phosphoric acid concentration process. By measuring the inlet and outlet temperatures and mass flows of fluids, the overall heat transfer coefficient has been determined. Determining the overall heat transfer coefficient for the heat exchanger with clean and fouled surfaces, the fouling resistance was calculated. The results obtained from the heat exchanger studied, show that the fouling resistance increase with time presenting an exponential evolution in agreement with the model suggested by Kern and Seaton, with the existence of fluctuation caused by the instability of the flow rate and the temperature. Bad cleaning of the heat exchanger involves the absence of the induction period and consequently, causes high values of the fouling resistance and of the deposit fouling during a relatively short period of time.


Sign in / Sign up

Export Citation Format

Share Document