Integral Geometry and Cohomology in Field Theory on the Space-Time as Complex Riemannian Manifold
The study of the relationships between the integration invariants and the different classes of operators, as well as of functions inside the context of the integral geometry, establishes diverse homologies in the dual space of the functions. This is given in the class of cohomology of the integral operators that give solution to certain class of differential equations in field theory inside a holomorphic context. By this way, using a cohomological theory of appropriate operators that establish equivalences among cycles and cocycles of closed submanifolds, line bundles and contours can be obtained by a cohomology of general integrals, useful in the evaluation and measurement of fields, particles, and physical interactions of diverse nature that occurs in the space-time geometry and phenomena. Some of the results applied through this study are the obtaining of solutions through orbital integrals for the tensor of curvature R μν , of Einstein’s equations, and using the imbedding of cycles in a complex Riemannian manifold through the duality: line bundles with cohomological contours and closed submanifolds with cohomological functional. Concrete results also are obtained in the determination of Cauchy type integral for the reinterpretation of vector fields.