scholarly journals Fundamentals of Density Functional Theory: Recent Developments, Challenges and Future Horizons

2021 ◽  
Author(s):  
Muhammad Aamir Iqbal ◽  
Naila Ashraf ◽  
Wajeehah Shahid ◽  
Deeba Afzal ◽  
Faryal Idrees ◽  
...  

Density Functional Theory (DFT) is a powerful and commonly employed quantum mechanical tool for investigating various aspects of matter. The research in this field ranges from the development of novel analytical approaches focused on the design of precise exchange-correlation functionals to the use of this technique to predict the molecular and electronic configuration of atoms, molecules, complexes, and solids in both gas and solution phases. The history to DFT’s success is the quest for the exchange-correlation functional, which utilizes density to represent advanced many-body phenomena inside one element formalism. If a precise exchange-correlation functional is applied, it may correctly describe the quantum nature of matter. The estimated character of the exchange-correlation functional is the basis for DFT implementation success or failure. Hohenberg-Kohn established that every characteristic of a system in ground state is a unique functional of its density, laying the foundation for DFT, which is being utilized to explore the novelty of materials. This chapter is aimed to present an overview of DFT by explaining the theoretical background, commonly used approximations as well as their recent developments and challenges faced along-with new horizons.


2004 ◽  
Vol 18 (07) ◽  
pp. 1055-1067 ◽  
Author(s):  
K. KARLSSON ◽  
F. ARYASETIAWAN

We derive a simplified Bethe–Salpeter equation for calculating optical absorption based on the assumption of a local electron–hole interaction. The original four-point equation for the kernel is reduced to a two-point one. A connection to the exchange–correlation kernel in time-dependent density functional theory can be established. The resulting fxc is found to be -W/2 where W contains only the short-range (local) part of the Coulomb screened interaction. This simple approximation was successfully applied to optical absorption spectra of some excitonic crystals, reproducing not only the continuum excitons but also the bound ones.



2019 ◽  
Author(s):  
S. Giarrusso ◽  
Paola Gori-Giorgi

We analyze in depth two widely used definitions (from the theory of conditional probablity amplitudes and from the adiabatic connection formalism) of the exchange-correlation energy density and of the response potential of Kohn-Sham density functional theory. We introduce a local form of the coupling-constant-dependent Hohenberg-Kohn functional, showing that the difference between the two definitions is due to a corresponding local first-order term in the coupling constant, which disappears globally (when integrated over all space), but not locally. We also design an analytic representation for the response potential in the strong-coupling limit of density functional theory for a model single stretched bond.<br>



2019 ◽  
Author(s):  
Brandon B. Bizzarro ◽  
Colin K. Egan ◽  
Francesco Paesani

<div> <div> <div> <p>Interaction energies of halide-water dimers, X<sup>-</sup>(H<sub>2</sub>O), and trimers, X<sup>-</sup>(H<sub>2</sub>O)<sub>2</sub>, with X = F, Cl, Br, and I, are investigated using various many-body models and exchange-correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. Analysis of the results obtained with the many-body models demonstrates the need to capture important short-range interactions in the regime of large inter-molecular orbital overlap, such as charge transfer and charge penetration. Failure to reproduce these effects can lead to large deviations relative to reference data calculated at the coupled cluster level of theory. Decompositions of interaction energies carried out with the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method demonstrate that permanent and inductive electrostatic energies are accurately reproduced by all classes of XC functionals (from generalized gradient corrected (GGA) to hybrid and range-separated functionals), while significant variance is found for charge transfer energies predicted by different XC functionals. Since GGA and hybrid XC functionals predict the most and least attractive charge transfer energies, respectively, the large variance is likely due to the delocalization error. In this scenario, the hybrid XC functionals are then expected to provide the most accurate charge transfer energies. The sum of Pauli repulsion and dispersion energies are the most varied among the XC functionals, but it is found that a correspondence between the interaction energy and the ALMO EDA total frozen energy may be used to determine accurate estimates for these contributions. </p> </div> </div> </div>



2003 ◽  
Vol 118 (3) ◽  
pp. 1044-1053 ◽  
Author(s):  
M. van Faassen ◽  
P. L. de Boeij ◽  
R. van Leeuwen ◽  
J. A. Berger ◽  
J. G. Snijders


2021 ◽  
Author(s):  
Mojtaba Alipour ◽  
Parisa Fallahzadeh

Density functional theory formalisms of energy partitioning schemes are utilized to find out what energetic components govern interactions in halogenated complexes.





2003 ◽  
Vol 107 (47) ◽  
pp. 10154-10158 ◽  
Author(s):  
So Hirata ◽  
Chang-Guo Zhan ◽  
Edoardo Aprà ◽  
Theresa L. Windus ◽  
David A. Dixon


Sign in / Sign up

Export Citation Format

Share Document